File size: 5,066 Bytes
7791147
9c2ebfa
7791147
bd5c559
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5bda548
61ab4dd
 
 
 
 
98ed851
bd5c559
7d6b06b
 
61ab4dd
 
830679d
7d6b06b
830679d
 
 
 
61ab4dd
 
 
 
 
 
a662231
61ab4dd
a662231
61ab4dd
a662231
61ab4dd
 
 
f729977
98ed851
f729977
98ed851
f729977
98ed851
f729977
98ed851
f729977
98ed851
f729977
98ed851
61ab4dd
 
aec695a
 
 
 
 
 
 
 
 
 
 
 
9d864f8
 
 
 
 
 
 
 
 
 
 
 
9a01103
 
 
 
 
 
 
 
 
 
 
 
be7dd21
9a01103
 
42a30c9
 
 
 
 
 
 
 
 
 
 
 
 
 
0154828
 
 
 
 
50e4188
0154828
 
 
 
 
50e4188
0154828
044a8f1
 
 
 
 
 
 
 
 
 
278e56a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
---
license: cc-by-nc-sa-4.0
---

Pre-trained models and output samples of ControlNet-LLLite form bdsqlsz

Inference with ComfyUI: https://github.com/kohya-ss/ControlNet-LLLite-ComfyUI

For 1111's Web UI, [sd-webui-controlnet](https://github.com/Mikubill/sd-webui-controlnet) extension supports ControlNet-LLLite.

Training: https://github.com/kohya-ss/sd-scripts/blob/sdxl/docs/train_lllite_README.md

The recommended preprocessing for the animeface model is [Anime-Face-Segmentation](https://github.com/siyeong0/Anime-Face-Segmentation)

# Models

## Trained on anime model

AnimeFaceSegment、Normal、T2i-Color/Shuffle、lineart_anime_denoise、recolor_luminance

Base Model use[Kohaku-XL](https://civitai.com/models/136389?modelVersionId=150441)

MLSD 

Base Model use[ProtoVision XL - High Fidelity 3D](https://civitai.com/models/125703?modelVersionId=144229)

# Samples

## AnimeFaceSegmentV1

![source 1](./sample/00000-1254802172.png) ![sample 1-1](./sample/00153-1415397694.png)

![sample 1-2](./sample/00155-541628598.png) ![sample 1-3](./sample/00156-3563138011.png)

![source 2](./sample/00013-1254802185.png) ![sample 2-1](./sample/00157-172216875.png)

![sample 2-2](./sample/00161-125697048.png) ![sample 2-3](./sample/00163-3802019239.png)

## AnimeFaceSegmentV2

![source 1](./sample/00015-882327104.png)

![sample 1](./sample/grid-0000-656896882.png)

![source 2](./sample/00081-882327170.png)

![sample 2](./sample/grid-0000-2857388239.png)

## MLSDV2

![source 1](./sample/0-73.png)

![preprocess 1](./sample/mlsd-0000.png)

![sample 1](./sample/grid-0001-496872924.png)

![source 2](./sample/0-151.png)

![preprocess 2](./sample/mlsd-0001.png)

![sample 2](./sample/grid-0002-906633402.png)

## Normal

![source 1](./sample/test.png)

![preprocess 1](./sample/normal_bae-0004.png)

![sample 1](./sample/grid-0007-2668683255.png)

![source 2](./sample/zelda_rgba.png)

![preprocess 2](./sample/normal_bae-0005.png)

![sample 2](./sample/grid-0008-2191923130.png)

## T2i-Color/Shuffle

![source 1](./sample/sample_0_525_c9a3a20fa609fe4bbf04.png)

![preprocess 1](./sample/color-0008.png)

![sample 1](./sample/grid-0017-751452001.jpg)

![source 2](./sample/F8LQ75WXoAETQg3.jpg)

![preprocess 2](./sample/color-0009.png)

![sample 2](./sample/grid-0018-2976518185.jpg)

## Lineart_Anime_Denoise

![source 1](./sample/20230826131545.png)

![preprocess 1](./sample/lineart_anime_denoise-1308.png)

![sample 1](./sample/grid-0028-1461058306.png)

![source 2](./sample/Snipaste_2023-08-10_23-33-53.png)

![preprocess 2](./sample/lineart_anime_denoise-1309.png)

![sample 2](./sample/grid-0030-1612754720.png)

## Recolor_Luminance

![source 1](./sample/F8LQ75WXoAETQg3.jpg)

![preprocess 1](./sample/recolor_luminance-0014.png)

![sample 1](./sample/grid-0060-2359545755.png)

![source 2](./sample/Snipaste_2023-08-15_02-38-05.png)

![preprocess 2](./sample/recolor_luminance-0016.png)

![sample 2](./sample/grid-0061-448628292.png)

## Canny

![source 1](./sample/Snipaste_2023-08-10_23-33-53.png)

![preprocess 1](./sample/canny-0034.png)

![sample 1](./sample/grid-0100-2599077425.png)

![source 2](./sample/00021-210474367.jpeg)

![preprocess 2](./sample/canny-0021.png)

![sample 2](./sample/grid-0084-938772089.png)

## DW_OpenPose

![preprocess 1](./sample/dw_openpose_full-0015.png)

![sample 1](./sample/grid-0015-4163265662.png)

![preprocess 2](./sample/dw_openpose_full-0030.png)

![sample 2](./sample/grid-0030-2839828192.png)

## Tile_Anime

![source 1](./sample/03476-424776255.png)

![sample 1](./sample/grid-0008-3461355229.png)

![sample 2](./sample/grid-0015-4163265662.png)

![sample 3](./sample/00094-188618111.png)

和其他模型不同,我需要简单解释一下tile模型的用法。
总的来说,tile模型有三个用法, 
1、不输入任何提示词,它可以直接还原参考图的大致效果,然后略微重新修改局部细节,可以用于V2V。(图2)
2、权重设定为0.55~0.75,它可以保持原本构图和姿势的基础上,接受提示词和LoRA的修改。(图3)
3、使用配合放大效果,对每个tiling进行细节增加的同时保持一致性。(图4)

因为训练时使用的数据集为动漫模型,所以目前对真实摄影风格的重绘效果并不好,需要等待完成最终版本。

Unlike other models, I need to briefly explain the usage of the tile model.
In general, there are three uses for the tile model,
1. Without entering any prompt words, it can directly restore the approximate effect of the reference image and then slightly modify local details. It can be used for V2V (Figure 2).
2. With a weight setting of 0.55~0.75, it can maintain the original composition and pose while accepting modifications from prompt words and LoRA (Figure 3).
3. Use in conjunction with magnification effects to increase detail for each tiling while maintaining consistency (Figure 4).

Since the dataset used during training is an anime model, currently, its repainting effect on real photography styles is not good; we will have to wait until completing its final version.