File size: 1,187 Bytes
72c61d6 96b09a2 72c61d6 96b09a2 72c61d6 2b53f5a 72c61d6 63978b0 72c61d6 63978b0 72c61d6 96b09a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
---
library_name: transformers
license: mit
base_model:
- neuralmind/bert-base-portuguese-cased
tags:
- generated_from_trainer
model-index:
- name: congretimbau3
results: []
datasets:
- belisards/ementas_senado_1946_2024
- belisards/ementas_camarabr_1934_2024
language:
- pt
---
# congretimbau
This model is a fine-tuned version of [BERTimbau](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on a dataset with bills of Brazilian law proposals.
It achieves the following results on the evaluation set:
- eval_loss: 0.4885
- eval_runtime: 798.5704
- eval_samples_per_second: 169.279
- eval_steps_per_second: 1.324
- epoch: 2.3669
- step: 10000
## Training and evaluation data
Data from the Chamber of Deputies and the Federal Senate.
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 300
- num_epochs: 10
### Framework versions
- Transformers 4.45.1
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.0 |