--- library_name: transformers license: mit base_model: - neuralmind/bert-base-portuguese-cased tags: - generated_from_trainer model-index: - name: congretimbau3 results: [] datasets: - belisards/ementas_senado_1946_2024 - belisards/ementas_camarabr_1934_2024 language: - pt --- # congretimbau This model is a fine-tuned version of [BERTimbau](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on a dataset with bill of Brazilian law proposals. It achieves the following results on the evaluation set: - eval_loss: 0.4885 - eval_runtime: 798.5704 - eval_samples_per_second: 169.279 - eval_steps_per_second: 1.324 - epoch: 2.3669 - step: 10000 ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 300 - num_epochs: 10 ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.0