--- base_model: klue/roberta-large tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: pogny_5_64_0.01 results: [] --- [Visualize in Weights & Biases](https://wandb.ai/bella05/huggingface/runs/jojvlp2s) # pogny_5_64_0.01 This model is a fine-tuned version of [klue/roberta-large](https://huggingface.co/klue/roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6866 - Accuracy: 0.4376 - F1: 0.2665 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.01 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 2.5357 | 1.0 | 1205 | 2.2542 | 0.4376 | 0.2665 | | 2.2118 | 2.0 | 2410 | 2.0758 | 0.4376 | 0.2665 | | 2.0506 | 3.0 | 3615 | 2.0029 | 0.4376 | 0.2665 | | 1.8985 | 4.0 | 4820 | 1.9957 | 0.4376 | 0.2665 | | 1.709 | 5.0 | 6025 | 1.6866 | 0.4376 | 0.2665 | ### Framework versions - Transformers 4.41.0 - Pytorch 2.2.2 - Datasets 2.19.1 - Tokenizers 0.19.1