--- language: en license: mit tags: - vision - image-captioning pipeline_tag: image-to-text --- Quantization with [bitsandbytes](https://github.com/TimDettmers/bitsandbytes) _8-bit / nf4 / Safetensors_ -_Mediocre_ 🥱 # InstructBLIP model InstructBLIP model using [Flan-T5-xl](https://huggingface.co/google/flan-t5-xl) as language model. InstructBLIP was introduced in the paper [InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning](https://arxiv.org/abs/2305.06500) by Dai et al. Disclaimer: The team releasing InstructBLIP did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description InstructBLIP is a visual instruction tuned version of [BLIP-2](https://huggingface.co/docs/transformers/main/model_doc/blip-2). Refer to the paper for details. ![InstructBLIP architecture](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/instructblip_architecture.jpg) ## Intended uses & limitations Usage is as follows: ``` from transformers import InstructBlipProcessor, InstructBlipForConditionalGeneration import torch from PIL import Image import requests model = InstructBlipForConditionalGeneration.from_pretrained("Salesforce/instructblip-flan-t5-xl") processor = InstructBlipProcessor.from_pretrained("Salesforce/instructblip-flan-t5-xl") device = "cuda" if torch.cuda.is_available() else "cpu" model.to(device) url = "https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg" image = Image.open(requests.get(url, stream=True).raw).convert("RGB") prompt = "What is unusual about this image?" inputs = processor(images=image, text=prompt, return_tensors="pt").to(device) outputs = model.generate( **inputs, do_sample=False, num_beams=5, max_length=256, min_length=1, top_p=0.9, repetition_penalty=1.5, length_penalty=1.0, temperature=1, ) generated_text = processor.batch_decode(outputs, skip_special_tokens=True)[0].strip() print(generated_text) ``` ### How to use For code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/main/en/model_doc/instructblip).