benjipeng commited on
Commit
f2e03ed
·
1 Parent(s): 76b9241

Upload folder using huggingface_hub

Browse files
.DS_Store ADDED
Binary file (6.15 kB). View file
 
.gitattributes CHANGED
@@ -25,7 +25,6 @@
25
  *.safetensors filter=lfs diff=lfs merge=lfs -text
26
  saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
  *.tar.* filter=lfs diff=lfs merge=lfs -text
28
- *.tar filter=lfs diff=lfs merge=lfs -text
29
  *.tflite filter=lfs diff=lfs merge=lfs -text
30
  *.tgz filter=lfs diff=lfs merge=lfs -text
31
  *.wasm filter=lfs diff=lfs merge=lfs -text
 
25
  *.safetensors filter=lfs diff=lfs merge=lfs -text
26
  saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
  *.tar.* filter=lfs diff=lfs merge=lfs -text
 
28
  *.tflite filter=lfs diff=lfs merge=lfs -text
29
  *.tgz filter=lfs diff=lfs merge=lfs -text
30
  *.wasm filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 264.13 +/- 9.76
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7db6d6ff70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7db6d74040>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7db6d740d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7db6d74160>", "_build": "<function ActorCriticPolicy._build at 0x7f7db6d741f0>", "forward": "<function ActorCriticPolicy.forward at 0x7f7db6d74280>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f7db6d74310>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7db6d743a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f7db6d74430>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7db6d744c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7db6d74550>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7db6d745e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f7db6d6ce40>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1507328, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676574304927517265, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJphlrx2IlK8sP/LvEbrWr51e1w74gJ3vQAAgD8AAIA/DVJ+vh8dKT8bMuk9A/+9vmgp1L0qnWA9AAAAAAAAAAAAjmw9rx4TPTMDi72EKWG+OlS1PAISMrwAAAAAAAAAALP0Ub13+8U+f9g0PeGrtr5dgAI9YrFGPQAAAAAAAAAADVVuPkBKgz8G39Y+l/Mdv1qL1T6SaOE9AAAAAAAAAACmlzU+cNMyPxMjiz2PY8q+qSokPg++wb0AAAAAAAAAAKbgrD1p1wk/a4thPSpUkr6MRGQ8du9xPQAAAAAAAAAAszVWPZjnkD8m6vQ9e/LnvmoTZD3VHxE8AAAAAAAAAAAzXI49HUO8Pzh2GD/zEd89rP8pPJDGJD4AAAAAAAAAACbBFj7AViM/aDUMvlXSsL4+fYI80t3FvQAAAAAAAAAA81PdvVvHmD9Ggny+TinYvsm9kb6WUNS9AAAAAAAAAAANvE0+N9ChPyRmGD85wBO/zKK4PoZ5Gj4AAAAAAAAAAOYd9D1fQdE+00XmvbPEnr7HFy27ekesuwAAAAAAAAAA5prEPY0fLz8ZVrg969q7vgHY2j1CkgQ8AAAAAAAAAAAA9n28Bdfku0J5Xju5iBo8i3A6vaHpBz0AAIA/AACAP83A3zxxex+7LIU/PVw8ob4Msf88rR7jOgAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVORAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMId9mvO52icUCUhpRSlIwBbJRL2owBdJRHQJoD4GpuMuR1fZQoaAZoCWgPQwj5Eb9izWhwQJSGlFKUaBVL2mgWR0CaBEGHHmzTdX2UKGgGaAloD0MI4ue/By/mb0CUhpRSlGgVS/RoFkdAmgXcuSOinHV9lChoBmgJaA9DCLOXbaftz3FAlIaUUpRoFUvfaBZHQJoGTkzXSSh1fZQoaAZoCWgPQwh7ouvCzyRxQJSGlFKUaBVNAwFoFkdAmgbAJPZZjnV9lChoBmgJaA9DCCz1LAglUXFAlIaUUpRoFU0GAWgWR0CaByoVmBe5dX2UKGgGaAloD0MINZnxttLSckCUhpRSlGgVTWoBaBZHQJoIvueBg/l1fZQoaAZoCWgPQwjCwd7EkL9sQJSGlFKUaBVL6GgWR0CaCRiZv1lHdX2UKGgGaAloD0MIt3u5T87EcECUhpRSlGgVS/NoFkdAmglMdDIBBHV9lChoBmgJaA9DCDntKTmnqm5AlIaUUpRoFUvkaBZHQJoJ1rdnCfp1fZQoaAZoCWgPQwjW/znMlwVxQJSGlFKUaBVNAgFoFkdAmgnu9nK4hHV9lChoBmgJaA9DCKp8z0hErHFAlIaUUpRoFUv/aBZHQJoKCASWZ7Z1fZQoaAZoCWgPQwjDuBtEa1NvQJSGlFKUaBVL6GgWR0CaCmByjpLVdX2UKGgGaAloD0MIKNcUyKwfckCUhpRSlGgVTXwBaBZHQJoKdFocrAh1fZQoaAZoCWgPQwjU8gNXuS9xQJSGlFKUaBVL/GgWR0CaCqb1yvLYdX2UKGgGaAloD0MID9WUZB1Wb0CUhpRSlGgVS+5oFkdAmgr/alDWsnV9lChoBmgJaA9DCMTOFDovWXFAlIaUUpRoFU0vAWgWR0CaC5mGdqcmdX2UKGgGaAloD0MIFNGvrZ/Ub0CUhpRSlGgVTUABaBZHQJoMH/FR51N1fZQoaAZoCWgPQwivRKD6h+FxQJSGlFKUaBVL6GgWR0CaDHKgIyCWdX2UKGgGaAloD0MIofMauwQIcECUhpRSlGgVTQIBaBZHQJoOCEHt4Rp1fZQoaAZoCWgPQwgGgCpunAhxQJSGlFKUaBVNFQFoFkdAmg4ejdpItnV9lChoBmgJaA9DCABUceOWWHBAlIaUUpRoFU0JAWgWR0CaDqHhS9/SdX2UKGgGaAloD0MIu/JZnodhcUCUhpRSlGgVS+toFkdAmg9HB55Z83V9lChoBmgJaA9DCKG9+nho7XJAlIaUUpRoFUvgaBZHQJoPRRMvh611fZQoaAZoCWgPQwhM4NbdPEdxQJSGlFKUaBVL4WgWR0CaD/nmJWNndX2UKGgGaAloD0MIzuFa7SHHcUCUhpRSlGgVS/ZoFkdAmhDOSW7e23V9lChoBmgJaA9DCAucbAP3enBAlIaUUpRoFUv8aBZHQJoQ5WMju8d1fZQoaAZoCWgPQwiCVmDIagRyQJSGlFKUaBVNEQFoFkdAmhDwvL5h0HV9lChoBmgJaA9DCKfJjLdVmnJAlIaUUpRoFUvoaBZHQJoRDGR3eN11fZQoaAZoCWgPQwhzZOWXQfFyQJSGlFKUaBVNCgFoFkdAmhGlYU34sXV9lChoBmgJaA9DCLqD2JmCd3FAlIaUUpRoFUvzaBZHQJoRqqdYnv51fZQoaAZoCWgPQwg3qWisvU9xQJSGlFKUaBVNGQFoFkdAmhIXogV45nV9lChoBmgJaA9DCGnk84onj21AlIaUUpRoFUv6aBZHQJomqa+evp11fZQoaAZoCWgPQwj034PXLiJxQJSGlFKUaBVL+GgWR0CaJ3Iv8IiUdX2UKGgGaAloD0MIhlYnZ6jeckCUhpRSlGgVS9xoFkdAmihC6xxDLXV9lChoBmgJaA9DCMGNlC2ShHFAlIaUUpRoFU0oAWgWR0CaKGSkCV8kdX2UKGgGaAloD0MIu/CD8ylHckCUhpRSlGgVS/RoFkdAmij8lw97nnV9lChoBmgJaA9DCJ9XPPXIOG1AlIaUUpRoFUvpaBZHQJopMIcBEKF1fZQoaAZoCWgPQwgJwap6uedxQJSGlFKUaBVL4WgWR0CaKYn2IwdsdX2UKGgGaAloD0MIb2JITuaccECUhpRSlGgVS+ZoFkdAmipNVWCEpXV9lChoBmgJaA9DCHJPV3csjHFAlIaUUpRoFUvhaBZHQJorA4ffXPJ1fZQoaAZoCWgPQwiCcXDpGLVuQJSGlFKUaBVL6WgWR0CaKyEkSmIkdX2UKGgGaAloD0MIkgcii7S9bkCUhpRSlGgVS/FoFkdAmiuTMeOn23V9lChoBmgJaA9DCJPEknJ35HFAlIaUUpRoFUvraBZHQJosFPYWcjJ1fZQoaAZoCWgPQwiKyLCKNxlxQJSGlFKUaBVNDAFoFkdAmiwsDB/I83V9lChoBmgJaA9DCOYDAp1JmHNAlIaUUpRoFU1cAWgWR0CaLNu3+dbxdX2UKGgGaAloD0MIyCQjZ2H+b0CUhpRSlGgVS/RoFkdAmi0gIyCWeHV9lChoBmgJaA9DCBIvT+fKjXFAlIaUUpRoFU0ZAWgWR0CaLUeLvTgEdX2UKGgGaAloD0MIilWDMDfpckCUhpRSlGgVTQcBaBZHQJotRPuXu3N1fZQoaAZoCWgPQwi0PuWYLMdyQJSGlFKUaBVL3mgWR0CaLVxVQyh0dX2UKGgGaAloD0MI19081aEMc0CUhpRSlGgVS/ZoFkdAmi6l9roGIXV9lChoBmgJaA9DCIuLo3LTlHFAlIaUUpRoFUv4aBZHQJovdAMUh3d1fZQoaAZoCWgPQwihv9AjRvdwQJSGlFKUaBVNDgFoFkdAmi9zUutfX3V9lChoBmgJaA9DCM0Ew7mGYm1AlIaUUpRoFUv6aBZHQJowH2OAAhl1fZQoaAZoCWgPQwheTDPda4ltQJSGlFKUaBVL3mgWR0CaMCq20AtGdX2UKGgGaAloD0MIWHTrNX0WcECUhpRSlGgVS+ZoFkdAmjEYUi6g/XV9lChoBmgJaA9DCFhZ2xRPLXBAlIaUUpRoFUvnaBZHQJoxPiCJ40N1fZQoaAZoCWgPQwizs+idylZxQJSGlFKUaBVNMgFoFkdAmjFKOgg5inV9lChoBmgJaA9DCPNZngd3cXJAlIaUUpRoFUvhaBZHQJoxhDTjNpx1fZQoaAZoCWgPQwjsFKsGYcNuQJSGlFKUaBVL4GgWR0CaMgyWiUPhdX2UKGgGaAloD0MIBrggW5Z3cECUhpRSlGgVS85oFkdAmjKsvduYQnV9lChoBmgJaA9DCJ1kq8spjUpAlIaUUpRoFUvZaBZHQJozFc4YJmd1fZQoaAZoCWgPQwgqrFRQUW1yQJSGlFKUaBVNAQFoFkdAmjOtQ0oBrHV9lChoBmgJaA9DCJ0Rpb2BTXBAlIaUUpRoFUv8aBZHQJoz07o0Q9R1fZQoaAZoCWgPQwgGZoUiHdRwQJSGlFKUaBVL/GgWR0CaNAe+23KCdX2UKGgGaAloD0MIpdx9jo9UQkCUhpRSlGgVS81oFkdAmjUgrUb1iHV9lChoBmgJaA9DCCiCOA+ntHJAlIaUUpRoFU1UAWgWR0CaNTbXpW3jdX2UKGgGaAloD0MIn8iTpKtbckCUhpRSlGgVTQABaBZHQJo1v2i+L3t1fZQoaAZoCWgPQwjeOZSh6qZwQJSGlFKUaBVL32gWR0CaNlg8KXv6dX2UKGgGaAloD0MIS80eaEXVckCUhpRSlGgVS/poFkdAmjZkbLlmvnV9lChoBmgJaA9DCFUUr7J2KHBAlIaUUpRoFUvuaBZHQJo2uBBiTdN1fZQoaAZoCWgPQwioOuRmuC5yQJSGlFKUaBVL1WgWR0CaNx6TW5H3dX2UKGgGaAloD0MIKNGSx9NccUCUhpRSlGgVS+xoFkdAmjeWqYJE6XV9lChoBmgJaA9DCFGiJY+nQHFAlIaUUpRoFUveaBZHQJo3nUe+23N1fZQoaAZoCWgPQwhEozuI3epwQJSGlFKUaBVL+2gWR0CaOB4eLehxdX2UKGgGaAloD0MIA30iT5IkbkCUhpRSlGgVS/hoFkdAmjjMg6ltTHV9lChoBmgJaA9DCBjt8UK6RnBAlIaUUpRoFUv0aBZHQJo5UiKR+0B1fZQoaAZoCWgPQwhJ2SJp9wtxQJSGlFKUaBVL3WgWR0CaOcn1FpfydX2UKGgGaAloD0MIkNsvn6y8b0CUhpRSlGgVS+VoFkdAmjnfy08eS3V9lChoBmgJaA9DCDI6IAk7wXFAlIaUUpRoFUvraBZHQJo6Uk5ZKWd1fZQoaAZoCWgPQwj20D5W8NlwQJSGlFKUaBVL3WgWR0CaOwTBZZB+dX2UKGgGaAloD0MImrLTDyqbckCUhpRSlGgVTSgBaBZHQJo7ITJyQxN1fZQoaAZoCWgPQwhm9KPhFGVwQJSGlFKUaBVL+WgWR0CaO9vh60IDdX2UKGgGaAloD0MIsaNxqB/ZcUCUhpRSlGgVS+NoFkdAmjxxwEQoTnV9lChoBmgJaA9DCNV7Kqc9fTJAlIaUUpRoFUvAaBZHQJo8vg9/z8R1fZQoaAZoCWgPQwholZnSevpwQJSGlFKUaBVNBgFoFkdAmjzMAWBSUHV9lChoBmgJaA9DCM4cklooG25AlIaUUpRoFUv2aBZHQJo9S6g/Tsp1fZQoaAZoCWgPQwhcH9Yb9cFwQJSGlFKUaBVNCgFoFkdAmj132/SH/XV9lChoBmgJaA9DCE1qaAMwCHBAlIaUUpRoFUvjaBZHQJo+PGuLaVV1fZQoaAZoCWgPQwhs7uh/+YlwQJSGlFKUaBVNEQFoFkdAmj74mPYFq3V9lChoBmgJaA9DCJW4jnFFxnBAlIaUUpRoFU0lAWgWR0CaPwFqSHM2dX2UKGgGaAloD0MIbXAi+rXMckCUhpRSlGgVS9JoFkdAmj+fWYnfEXV9lChoBmgJaA9DCFGgT+RJ+3BAlIaUUpRoFUv6aBZHQJo/n668QI51fZQoaAZoCWgPQwhBYyZRL39uQJSGlFKUaBVL9WgWR0CaQAPmxMWXdX2UKGgGaAloD0MIdGA5QgYcbUCUhpRSlGgVS+toFkdAmkA0NnXd03V9lChoBmgJaA9DCO/GgsLgsnBAlIaUUpRoFUv2aBZHQJpBA25xzaN1fZQoaAZoCWgPQwjRrdf0oJBFQJSGlFKUaBVLnmgWR0CaQQmNzbN9dX2UKGgGaAloD0MIG/Sltz/Kb0CUhpRSlGgVS9poFkdAmkEQDV6NVHV9lChoBmgJaA9DCDp0et6NJUZAlIaUUpRoFUvCaBZHQJpBIurZJ051fZQoaAZoCWgPQwhClZo90PNwQJSGlFKUaBVL9mgWR0CaQaEnLJS0dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 368, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:26383765edc4aba97367cf3d0387eaf4f862ab2129870a555daa51364a858a51
3
+ size 131
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7db6d6ff70>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7db6d74040>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7db6d740d0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7db6d74160>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f7db6d741f0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f7db6d74280>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f7db6d74310>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7db6d743a0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f7db6d74430>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7db6d744c0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7db6d74550>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7db6d745e0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f7db6d6ce40>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1507328,
47
+ "_total_timesteps": 1500000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1676574304927517265,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJphlrx2IlK8sP/LvEbrWr51e1w74gJ3vQAAgD8AAIA/DVJ+vh8dKT8bMuk9A/+9vmgp1L0qnWA9AAAAAAAAAAAAjmw9rx4TPTMDi72EKWG+OlS1PAISMrwAAAAAAAAAALP0Ub13+8U+f9g0PeGrtr5dgAI9YrFGPQAAAAAAAAAADVVuPkBKgz8G39Y+l/Mdv1qL1T6SaOE9AAAAAAAAAACmlzU+cNMyPxMjiz2PY8q+qSokPg++wb0AAAAAAAAAAKbgrD1p1wk/a4thPSpUkr6MRGQ8du9xPQAAAAAAAAAAszVWPZjnkD8m6vQ9e/LnvmoTZD3VHxE8AAAAAAAAAAAzXI49HUO8Pzh2GD/zEd89rP8pPJDGJD4AAAAAAAAAACbBFj7AViM/aDUMvlXSsL4+fYI80t3FvQAAAAAAAAAA81PdvVvHmD9Ggny+TinYvsm9kb6WUNS9AAAAAAAAAAANvE0+N9ChPyRmGD85wBO/zKK4PoZ5Gj4AAAAAAAAAAOYd9D1fQdE+00XmvbPEnr7HFy27ekesuwAAAAAAAAAA5prEPY0fLz8ZVrg969q7vgHY2j1CkgQ8AAAAAAAAAAAA9n28Bdfku0J5Xju5iBo8i3A6vaHpBz0AAIA/AACAP83A3zxxex+7LIU/PVw8ob4Msf88rR7jOgAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.004885333333333408,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVORAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMId9mvO52icUCUhpRSlIwBbJRL2owBdJRHQJoD4GpuMuR1fZQoaAZoCWgPQwj5Eb9izWhwQJSGlFKUaBVL2mgWR0CaBEGHHmzTdX2UKGgGaAloD0MI4ue/By/mb0CUhpRSlGgVS/RoFkdAmgXcuSOinHV9lChoBmgJaA9DCLOXbaftz3FAlIaUUpRoFUvfaBZHQJoGTkzXSSh1fZQoaAZoCWgPQwh7ouvCzyRxQJSGlFKUaBVNAwFoFkdAmgbAJPZZjnV9lChoBmgJaA9DCCz1LAglUXFAlIaUUpRoFU0GAWgWR0CaByoVmBe5dX2UKGgGaAloD0MINZnxttLSckCUhpRSlGgVTWoBaBZHQJoIvueBg/l1fZQoaAZoCWgPQwjCwd7EkL9sQJSGlFKUaBVL6GgWR0CaCRiZv1lHdX2UKGgGaAloD0MIt3u5T87EcECUhpRSlGgVS/NoFkdAmglMdDIBBHV9lChoBmgJaA9DCDntKTmnqm5AlIaUUpRoFUvkaBZHQJoJ1rdnCfp1fZQoaAZoCWgPQwjW/znMlwVxQJSGlFKUaBVNAgFoFkdAmgnu9nK4hHV9lChoBmgJaA9DCKp8z0hErHFAlIaUUpRoFUv/aBZHQJoKCASWZ7Z1fZQoaAZoCWgPQwjDuBtEa1NvQJSGlFKUaBVL6GgWR0CaCmByjpLVdX2UKGgGaAloD0MIKNcUyKwfckCUhpRSlGgVTXwBaBZHQJoKdFocrAh1fZQoaAZoCWgPQwjU8gNXuS9xQJSGlFKUaBVL/GgWR0CaCqb1yvLYdX2UKGgGaAloD0MID9WUZB1Wb0CUhpRSlGgVS+5oFkdAmgr/alDWsnV9lChoBmgJaA9DCMTOFDovWXFAlIaUUpRoFU0vAWgWR0CaC5mGdqcmdX2UKGgGaAloD0MIFNGvrZ/Ub0CUhpRSlGgVTUABaBZHQJoMH/FR51N1fZQoaAZoCWgPQwivRKD6h+FxQJSGlFKUaBVL6GgWR0CaDHKgIyCWdX2UKGgGaAloD0MIofMauwQIcECUhpRSlGgVTQIBaBZHQJoOCEHt4Rp1fZQoaAZoCWgPQwgGgCpunAhxQJSGlFKUaBVNFQFoFkdAmg4ejdpItnV9lChoBmgJaA9DCABUceOWWHBAlIaUUpRoFU0JAWgWR0CaDqHhS9/SdX2UKGgGaAloD0MIu/JZnodhcUCUhpRSlGgVS+toFkdAmg9HB55Z83V9lChoBmgJaA9DCKG9+nho7XJAlIaUUpRoFUvgaBZHQJoPRRMvh611fZQoaAZoCWgPQwhM4NbdPEdxQJSGlFKUaBVL4WgWR0CaD/nmJWNndX2UKGgGaAloD0MIzuFa7SHHcUCUhpRSlGgVS/ZoFkdAmhDOSW7e23V9lChoBmgJaA9DCAucbAP3enBAlIaUUpRoFUv8aBZHQJoQ5WMju8d1fZQoaAZoCWgPQwiCVmDIagRyQJSGlFKUaBVNEQFoFkdAmhDwvL5h0HV9lChoBmgJaA9DCKfJjLdVmnJAlIaUUpRoFUvoaBZHQJoRDGR3eN11fZQoaAZoCWgPQwhzZOWXQfFyQJSGlFKUaBVNCgFoFkdAmhGlYU34sXV9lChoBmgJaA9DCLqD2JmCd3FAlIaUUpRoFUvzaBZHQJoRqqdYnv51fZQoaAZoCWgPQwg3qWisvU9xQJSGlFKUaBVNGQFoFkdAmhIXogV45nV9lChoBmgJaA9DCGnk84onj21AlIaUUpRoFUv6aBZHQJomqa+evp11fZQoaAZoCWgPQwj034PXLiJxQJSGlFKUaBVL+GgWR0CaJ3Iv8IiUdX2UKGgGaAloD0MIhlYnZ6jeckCUhpRSlGgVS9xoFkdAmihC6xxDLXV9lChoBmgJaA9DCMGNlC2ShHFAlIaUUpRoFU0oAWgWR0CaKGSkCV8kdX2UKGgGaAloD0MIu/CD8ylHckCUhpRSlGgVS/RoFkdAmij8lw97nnV9lChoBmgJaA9DCJ9XPPXIOG1AlIaUUpRoFUvpaBZHQJopMIcBEKF1fZQoaAZoCWgPQwgJwap6uedxQJSGlFKUaBVL4WgWR0CaKYn2IwdsdX2UKGgGaAloD0MIb2JITuaccECUhpRSlGgVS+ZoFkdAmipNVWCEpXV9lChoBmgJaA9DCHJPV3csjHFAlIaUUpRoFUvhaBZHQJorA4ffXPJ1fZQoaAZoCWgPQwiCcXDpGLVuQJSGlFKUaBVL6WgWR0CaKyEkSmIkdX2UKGgGaAloD0MIkgcii7S9bkCUhpRSlGgVS/FoFkdAmiuTMeOn23V9lChoBmgJaA9DCJPEknJ35HFAlIaUUpRoFUvraBZHQJosFPYWcjJ1fZQoaAZoCWgPQwiKyLCKNxlxQJSGlFKUaBVNDAFoFkdAmiwsDB/I83V9lChoBmgJaA9DCOYDAp1JmHNAlIaUUpRoFU1cAWgWR0CaLNu3+dbxdX2UKGgGaAloD0MIyCQjZ2H+b0CUhpRSlGgVS/RoFkdAmi0gIyCWeHV9lChoBmgJaA9DCBIvT+fKjXFAlIaUUpRoFU0ZAWgWR0CaLUeLvTgEdX2UKGgGaAloD0MIilWDMDfpckCUhpRSlGgVTQcBaBZHQJotRPuXu3N1fZQoaAZoCWgPQwi0PuWYLMdyQJSGlFKUaBVL3mgWR0CaLVxVQyh0dX2UKGgGaAloD0MI19081aEMc0CUhpRSlGgVS/ZoFkdAmi6l9roGIXV9lChoBmgJaA9DCIuLo3LTlHFAlIaUUpRoFUv4aBZHQJovdAMUh3d1fZQoaAZoCWgPQwihv9AjRvdwQJSGlFKUaBVNDgFoFkdAmi9zUutfX3V9lChoBmgJaA9DCM0Ew7mGYm1AlIaUUpRoFUv6aBZHQJowH2OAAhl1fZQoaAZoCWgPQwheTDPda4ltQJSGlFKUaBVL3mgWR0CaMCq20AtGdX2UKGgGaAloD0MIWHTrNX0WcECUhpRSlGgVS+ZoFkdAmjEYUi6g/XV9lChoBmgJaA9DCFhZ2xRPLXBAlIaUUpRoFUvnaBZHQJoxPiCJ40N1fZQoaAZoCWgPQwizs+idylZxQJSGlFKUaBVNMgFoFkdAmjFKOgg5inV9lChoBmgJaA9DCPNZngd3cXJAlIaUUpRoFUvhaBZHQJoxhDTjNpx1fZQoaAZoCWgPQwjsFKsGYcNuQJSGlFKUaBVL4GgWR0CaMgyWiUPhdX2UKGgGaAloD0MIBrggW5Z3cECUhpRSlGgVS85oFkdAmjKsvduYQnV9lChoBmgJaA9DCJ1kq8spjUpAlIaUUpRoFUvZaBZHQJozFc4YJmd1fZQoaAZoCWgPQwgqrFRQUW1yQJSGlFKUaBVNAQFoFkdAmjOtQ0oBrHV9lChoBmgJaA9DCJ0Rpb2BTXBAlIaUUpRoFUv8aBZHQJoz07o0Q9R1fZQoaAZoCWgPQwgGZoUiHdRwQJSGlFKUaBVL/GgWR0CaNAe+23KCdX2UKGgGaAloD0MIpdx9jo9UQkCUhpRSlGgVS81oFkdAmjUgrUb1iHV9lChoBmgJaA9DCCiCOA+ntHJAlIaUUpRoFU1UAWgWR0CaNTbXpW3jdX2UKGgGaAloD0MIn8iTpKtbckCUhpRSlGgVTQABaBZHQJo1v2i+L3t1fZQoaAZoCWgPQwjeOZSh6qZwQJSGlFKUaBVL32gWR0CaNlg8KXv6dX2UKGgGaAloD0MIS80eaEXVckCUhpRSlGgVS/poFkdAmjZkbLlmvnV9lChoBmgJaA9DCFUUr7J2KHBAlIaUUpRoFUvuaBZHQJo2uBBiTdN1fZQoaAZoCWgPQwioOuRmuC5yQJSGlFKUaBVL1WgWR0CaNx6TW5H3dX2UKGgGaAloD0MIKNGSx9NccUCUhpRSlGgVS+xoFkdAmjeWqYJE6XV9lChoBmgJaA9DCFGiJY+nQHFAlIaUUpRoFUveaBZHQJo3nUe+23N1fZQoaAZoCWgPQwhEozuI3epwQJSGlFKUaBVL+2gWR0CaOB4eLehxdX2UKGgGaAloD0MIA30iT5IkbkCUhpRSlGgVS/hoFkdAmjjMg6ltTHV9lChoBmgJaA9DCBjt8UK6RnBAlIaUUpRoFUv0aBZHQJo5UiKR+0B1fZQoaAZoCWgPQwhJ2SJp9wtxQJSGlFKUaBVL3WgWR0CaOcn1FpfydX2UKGgGaAloD0MIkNsvn6y8b0CUhpRSlGgVS+VoFkdAmjnfy08eS3V9lChoBmgJaA9DCDI6IAk7wXFAlIaUUpRoFUvraBZHQJo6Uk5ZKWd1fZQoaAZoCWgPQwj20D5W8NlwQJSGlFKUaBVL3WgWR0CaOwTBZZB+dX2UKGgGaAloD0MImrLTDyqbckCUhpRSlGgVTSgBaBZHQJo7ITJyQxN1fZQoaAZoCWgPQwhm9KPhFGVwQJSGlFKUaBVL+WgWR0CaO9vh60IDdX2UKGgGaAloD0MIsaNxqB/ZcUCUhpRSlGgVS+NoFkdAmjxxwEQoTnV9lChoBmgJaA9DCNV7Kqc9fTJAlIaUUpRoFUvAaBZHQJo8vg9/z8R1fZQoaAZoCWgPQwholZnSevpwQJSGlFKUaBVNBgFoFkdAmjzMAWBSUHV9lChoBmgJaA9DCM4cklooG25AlIaUUpRoFUv2aBZHQJo9S6g/Tsp1fZQoaAZoCWgPQwhcH9Yb9cFwQJSGlFKUaBVNCgFoFkdAmj132/SH/XV9lChoBmgJaA9DCE1qaAMwCHBAlIaUUpRoFUvjaBZHQJo+PGuLaVV1fZQoaAZoCWgPQwhs7uh/+YlwQJSGlFKUaBVNEQFoFkdAmj74mPYFq3V9lChoBmgJaA9DCJW4jnFFxnBAlIaUUpRoFU0lAWgWR0CaPwFqSHM2dX2UKGgGaAloD0MIbXAi+rXMckCUhpRSlGgVS9JoFkdAmj+fWYnfEXV9lChoBmgJaA9DCFGgT+RJ+3BAlIaUUpRoFUv6aBZHQJo/n668QI51fZQoaAZoCWgPQwhBYyZRL39uQJSGlFKUaBVL9WgWR0CaQAPmxMWXdX2UKGgGaAloD0MIdGA5QgYcbUCUhpRSlGgVS+toFkdAmkA0NnXd03V9lChoBmgJaA9DCO/GgsLgsnBAlIaUUpRoFUv2aBZHQJpBA25xzaN1fZQoaAZoCWgPQwjRrdf0oJBFQJSGlFKUaBVLnmgWR0CaQQmNzbN9dX2UKGgGaAloD0MIG/Sltz/Kb0CUhpRSlGgVS9poFkdAmkEQDV6NVHV9lChoBmgJaA9DCDp0et6NJUZAlIaUUpRoFUvCaBZHQJpBIurZJ051fZQoaAZoCWgPQwhClZo90PNwQJSGlFKUaBVL9mgWR0CaQaEnLJS0dWUu"
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 368,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6a2a267c91a4461fc157e3bd9052622049c9fb22852ea95443a272c004c9a93c
3
+ size 130
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c9ad7b4b8e66e5b7cace82d31fe04b827b7b3b09defc2426b8d34d7c40db2458
3
+ size 130
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:99153ed9b545f0f5af916841c8510b36c9a0a84e88f412678bced8aba994b482
3
+ size 128
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (213 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 264.1317882972187, "std_reward": 9.759365237534919, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-16T19:33:30.354743"}