--- license: apache-2.0 datasets: - go_emotions metrics: - accuracy model-index: - name: xtremedistil-emotion results: - task: name: Multi Label Text Classification type: multi_label_classification dataset: name: go_emotions type: emotion args: default metrics: - name: Accuracy type: accuracy value: NaN --- # xtremedistil-l6-h384-go-emotion This model is a fine-tuned version of [microsoft/xtremedistil-l6-h384-uncased](https://huggingface.co/microsoft/xtremedistil-l6-h384-uncased) on the [go_emotions dataset](https://huggingface.co/datasets/go_emotions). See notebook for how the model was trained and converted to ONNX format [![Training Notebook](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/jobergum/emotion/blob/main/TrainGoEmotions.ipynb) This model is deployed to [aiserv.cloud](https://aiserv.cloud/) for live demo of in-Browser ML inference See [https://github.com/jobergum/browser-ml-inference](https://github.com/jobergum/browser-ml-inference) ### Training hyperparameters - batch size 128 - learning_rate=3e-05 - epocs 4
  Num examples = 211225
  Num Epochs = 4
  Instantaneous batch size per device = 128
  Total train batch size (w. parallel, distributed & accumulation) = 128
  Gradient Accumulation steps = 1
  Total optimization steps = 6604
 [6604/6604 53:23, Epoch 4/4]
Step	Training Loss
500	0.263200
1000	0.156900
1500	0.152500
2000	0.145400
2500	0.140500
3000	0.135900
3500	0.132800
4000	0.129400
4500	0.127200
5000	0.125700
5500	0.124400
6000	0.124100
6500	0.123400