--- license: apache-2.0 datasets: - fistro/gromenauer language: - es pipeline_tag: text-generation base_model: - mistralai/Mistral-7B-v0.1 --- # Gromenauer-7B
gromenauer-7B logo
## Overview Gromenauer-7B is a Spanish language model designed to understand and generate high-quality Spanish text. Developed using the robust Mistral architecture, this model has been trained on an extensive literary corpus, ensuring it captures a wide range of linguistic nuances, styles, and contexts found in Spanish literature. ## Model Details - **Model Type**: Mistral - **Sequence Length**: 8192 - **Hidden Dimension**: 4096 - **Intermediate Dimension**: 14336 - **Number of Layers**: 32 - **Number of Attention Heads**: 32 - **Number of Key-Value Heads**: 8 - **Activation Function**: SiLU - **Initializer Range**: 0.02 - **Layer Norm Epsilon**: 1.0e-05 - **Use Flash Attention**: Yes - **Gradient Checkpointing**: Enabled (Block Size: 5) - **Sliding Window Attention**: 4096 - **Use Bias**: No ## Training Details - **Tokenizer**: [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) - **Batch Size**: 512 - **Learning Rate**: 1e-5 - **Optimizer**: Adam with beta1=0.9, beta2=0.95, epsilon=1e-8 - **Weight Decay**: 0.1 - **Warmup Steps**: 200 - **Learning Rate Schedule**: Cosine - **Number of Training Steps**: 7000 ## Usage To load the model in your project, you can use the following code: ```python from transformers import AutoModel, AutoTokenizer # Load the tokenizer tokenizer = AutoTokenizer.from_pretrained("bertin-project/Gromenauer-7B") # Load the model model = AutoModel.from_pretrained("bertin-project/Gromenauer-7B") # Example usage text = "Introduce aquí tu texto en español." inputs = tokenizer(text, return_tensors="pt") outputs = model(**inputs)