--- library_name: peft license: llama3.2 base_model: unsloth/Llama-3.2-1B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: miner1_8d32ad8c-9435-4ae7-983b-4ac80c8eefb0_1731081088 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Llama-3.2-1B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - MATH-Hard_train_data.json ds_type: json path: /workspace/input_data/MATH-Hard_train_data.json type: field_input: problem field_instruction: type field_output: solution system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 1 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: false hours_to_complete: 3 hub_model_id: besimray/miner1_8d32ad8c-9435-4ae7-983b-4ac80c8eefb0_1731081088 hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_steps: 500 micro_batch_size: 2 mlflow_experiment_name: /tmp/MATH-Hard_train_data.json model_type: AutoModelForCausalLM num_epochs: 4 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 save_strategy: steps sequence_len: 4096 started_at: '2024-11-08T15:51:28.612210' strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: besimray24-rayon wandb_mode: online wandb_project: Public_TuningSN wandb_run: miner_id_24 wandb_runid: 8d32ad8c-9435-4ae7-983b-4ac80c8eefb0 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ```

# miner1_8d32ad8c-9435-4ae7-983b-4ac80c8eefb0_1731081088 This model is a fine-tuned version of [unsloth/Llama-3.2-1B-Instruct](https://huggingface.co/unsloth/Llama-3.2-1B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8289 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.0664 | 0.0024 | 1 | 1.0069 | | 0.7462 | 0.0119 | 5 | 0.9825 | | 0.7953 | 0.0239 | 10 | 0.9039 | | 1.0157 | 0.0358 | 15 | 0.8693 | | 0.8336 | 0.0477 | 20 | 0.8612 | | 0.7776 | 0.0597 | 25 | 0.8493 | | 1.0749 | 0.0716 | 30 | 0.8430 | | 0.6592 | 0.0835 | 35 | 0.8414 | | 0.829 | 0.0955 | 40 | 0.8375 | | 0.7859 | 0.1074 | 45 | 0.8338 | | 0.6493 | 0.1193 | 50 | 0.8325 | | 0.9695 | 0.1313 | 55 | 0.8305 | | 0.767 | 0.1432 | 60 | 0.8282 | | 0.6508 | 0.1551 | 65 | 0.8289 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.1 - Pytorch 2.3.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.3