Update README.md
Browse files
README.md
CHANGED
@@ -1,23 +1,65 @@
|
|
1 |
---
|
2 |
-
base_model:
|
|
|
3 |
tags:
|
4 |
- text-generation-inference
|
5 |
- transformers
|
6 |
-
- unsloth
|
7 |
- qwen2
|
8 |
- trl
|
9 |
- sft
|
10 |
license: apache-2.0
|
11 |
language:
|
12 |
- en
|
|
|
|
|
|
|
13 |
---
|
14 |
|
15 |
# Uploaded model
|
16 |
|
17 |
- **Developed by:** beyoru
|
18 |
- **License:** apache-2.0
|
19 |
-
- **Finetuned from model :** unsloth/Qwen2.5-3B-Instruct
|
20 |
|
21 |
-
|
|
|
|
|
22 |
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
base_model:
|
3 |
+
- Qwen/Qwen2.5-3B-Instruct
|
4 |
tags:
|
5 |
- text-generation-inference
|
6 |
- transformers
|
|
|
7 |
- qwen2
|
8 |
- trl
|
9 |
- sft
|
10 |
license: apache-2.0
|
11 |
language:
|
12 |
- en
|
13 |
+
- vi
|
14 |
+
datasets:
|
15 |
+
- beyoru/Tin_hoc_mcq
|
16 |
---
|
17 |
|
18 |
# Uploaded model
|
19 |
|
20 |
- **Developed by:** beyoru
|
21 |
- **License:** apache-2.0
|
|
|
22 |
|
23 |
+
# Usage
|
24 |
+
```
|
25 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
26 |
|
27 |
+
model_name = "beyoru/MCQ-o1-512"
|
28 |
+
|
29 |
+
model = AutoModelForCausalLM.from_pretrained(
|
30 |
+
model_name,
|
31 |
+
torch_dtype="auto",
|
32 |
+
device_map="auto"
|
33 |
+
)
|
34 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
35 |
+
|
36 |
+
messages = [
|
37 |
+
{"role": "system", "content": "Bạn là một trợ lý thông minh có khả năng tạo ra một câu hỏi trắc nghiệm từ bất kỳ ngữ cảnh"},
|
38 |
+
{"role": "user", "content": "<YOUR CONTEXT>"}
|
39 |
+
]
|
40 |
+
text = tokenizer.apply_chat_template(
|
41 |
+
messages,
|
42 |
+
tokenize=False,
|
43 |
+
add_generation_prompt=True
|
44 |
+
)
|
45 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
46 |
+
|
47 |
+
generated_ids = model.generate(
|
48 |
+
**model_inputs,
|
49 |
+
do_sample=True
|
50 |
+
)
|
51 |
+
generated_ids = [
|
52 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
53 |
+
]
|
54 |
+
|
55 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
56 |
+
```
|
57 |
+
|
58 |
+
# Notes:
|
59 |
+
- For small datasets with narrow content which the model has already done well on our domain, and doesn't want the model to forget the knowledge => Just need to focus on o.
|
60 |
+
- Fine-tuned lora with rank = 1 and alpha = 64, epoch = 1, linear (optim)
|
61 |
+
- DoRA
|
62 |
+
|
63 |
+
# Improvement
|
64 |
+
- Increasing rank can help the model do better at robust structure.
|
65 |
+
- Try more efficient fine-tuning
|