beyoru commited on
Commit
eb7f0e7
·
verified ·
1 Parent(s): 5f121a8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +47 -5
README.md CHANGED
@@ -1,23 +1,65 @@
1
  ---
2
- base_model: unsloth/Qwen2.5-3B-Instruct
 
3
  tags:
4
  - text-generation-inference
5
  - transformers
6
- - unsloth
7
  - qwen2
8
  - trl
9
  - sft
10
  license: apache-2.0
11
  language:
12
  - en
 
 
 
13
  ---
14
 
15
  # Uploaded model
16
 
17
  - **Developed by:** beyoru
18
  - **License:** apache-2.0
19
- - **Finetuned from model :** unsloth/Qwen2.5-3B-Instruct
20
 
21
- This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
 
 
22
 
23
- [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ base_model:
3
+ - Qwen/Qwen2.5-3B-Instruct
4
  tags:
5
  - text-generation-inference
6
  - transformers
 
7
  - qwen2
8
  - trl
9
  - sft
10
  license: apache-2.0
11
  language:
12
  - en
13
+ - vi
14
+ datasets:
15
+ - beyoru/Tin_hoc_mcq
16
  ---
17
 
18
  # Uploaded model
19
 
20
  - **Developed by:** beyoru
21
  - **License:** apache-2.0
 
22
 
23
+ # Usage
24
+ ```
25
+ from transformers import AutoModelForCausalLM, AutoTokenizer
26
 
27
+ model_name = "beyoru/MCQ-o1-512"
28
+
29
+ model = AutoModelForCausalLM.from_pretrained(
30
+ model_name,
31
+ torch_dtype="auto",
32
+ device_map="auto"
33
+ )
34
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
35
+
36
+ messages = [
37
+ {"role": "system", "content": "Bạn là một trợ lý thông minh có khả năng tạo ra một câu hỏi trắc nghiệm từ bất kỳ ngữ cảnh"},
38
+ {"role": "user", "content": "<YOUR CONTEXT>"}
39
+ ]
40
+ text = tokenizer.apply_chat_template(
41
+ messages,
42
+ tokenize=False,
43
+ add_generation_prompt=True
44
+ )
45
+ model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
46
+
47
+ generated_ids = model.generate(
48
+ **model_inputs,
49
+ do_sample=True
50
+ )
51
+ generated_ids = [
52
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
53
+ ]
54
+
55
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
56
+ ```
57
+
58
+ # Notes:
59
+ - For small datasets with narrow content which the model has already done well on our domain, and doesn't want the model to forget the knowledge => Just need to focus on o.
60
+ - Fine-tuned lora with rank = 1 and alpha = 64, epoch = 1, linear (optim)
61
+ - DoRA
62
+
63
+ # Improvement
64
+ - Increasing rank can help the model do better at robust structure.
65
+ - Try more efficient fine-tuning