--- base_model: - Qwen/Qwen2.5-3B-Instruct tags: - text-generation-inference - transformers - qwen2 - trl - sft license: apache-2.0 language: - en - vi datasets: - beyoru/Tin_hoc_mcq --- # Uploaded model - **Developed by:** beyoru - **License:** apache-2.0 # Usage ``` from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "beyoru/MCQ-o1-512" model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(model_name) messages = [ {"role": "system", "content": "Bạn là một trợ lý thông minh có khả năng tạo ra một câu hỏi trắc nghiệm từ bất kỳ ngữ cảnh"}, {"role": "user", "content": ""} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) generated_ids = model.generate( **model_inputs, do_sample=True ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] ``` # Notes: - For small datasets with narrow content which the model has already done well on our domain, and doesn't want the model to forget the knowledge => Just need to focus on o. - Fine-tuned lora with rank = 1 and alpha = 64, epoch = 1, linear (optim) - DoRA # Improvement - Increasing rank can help the model do better at robust structure. - Try more efficient fine-tuning