sd35m-sfwbooru

This is a full rank finetune derived from stabilityai/stable-diffusion-3.5-medium.

The main validation prompt used during training was:

A photo-realistic image of a cat

Validation settings

  • CFG: 3.2
  • CFG Rescale: 0.0
  • Steps: 30
  • Sampler: FlowMatchEulerDiscreteScheduler
  • Seed: 42
  • Resolution: 1024x1024
  • Skip-layer guidance:

Note: The validation settings are not necessarily the same as the training settings.

The text encoder was not trained. You may reuse the base model text encoder for inference.

Training settings

  • Training epochs: 2
  • Training steps: 126250
  • Learning rate: 1.0
    • Learning rate schedule: cosine
    • Warmup steps: 500000
  • Max grad norm: 0.0
  • Effective batch size: 6
    • Micro-batch size: 6
    • Gradient accumulation steps: 1
    • Number of GPUs: 1
  • Gradient checkpointing: True
  • Prediction type: flow-matching (extra parameters=['shift=3'])
  • Optimizer: prodigyd0=1e-8,eps=1e-8
  • Trainable parameter precision: Pure BF16
  • Caption dropout probability: 10.0%

Datasets

sfwbooru-crop

  • Repeats: 0
  • Total number of images: 363920
  • Total number of aspect buckets: 1
  • Resolution: 1.048576 megapixels
  • Cropped: True
  • Crop style: random
  • Crop aspect: square
  • Used for regularisation data: No

Inference

import torch
from diffusers import DiffusionPipeline

model_id = 'bghira/sd35m-sfwbooru'
pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) # loading directly in bf16

prompt = "A photo-realistic image of a cat"
negative_prompt = 'blurry, cropped, ugly'

pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') # the pipeline is already in its target precision level
image = pipeline(
    prompt=prompt,
    negative_prompt=negative_prompt,
    num_inference_steps=30,
    generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(42),
    width=1024,
    height=1024,
    guidance_scale=3.2,
).images[0]
image.save("output.png", format="PNG")

Exponential Moving Average (EMA)

SimpleTuner generates a safetensors variant of the EMA weights and a pt file.

The safetensors file is intended to be used for inference, and the pt file is for continuing finetuning.

The EMA model may provide a more well-rounded result, but typically will feel undertrained compared to the full model as it is a running decayed average of the model weights.

Downloads last month
51,310
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for bghira/sd35m-sfwbooru

Finetuned
(6)
this model