File size: 6,788 Bytes
4c4becf
fa56382
4c4becf
4569997
4c4becf
 
 
 
 
 
 
 
4569997
fa56382
 
 
 
 
 
 
 
 
 
 
 
4569997
fa56382
4569997
fa56382
4569997
 
fa56382
4569997
fa56382
4569997
 
fa56382
4569997
fa56382
4569997
 
fa56382
4569997
fa56382
4569997
 
fa56382
4569997
fa56382
4569997
 
fa56382
4569997
fa56382
4569997
 
fa56382
4569997
fa56382
4569997
 
fa56382
4569997
fa56382
4569997
 
fa56382
4569997
fa56382
4569997
 
fa56382
4569997
fa56382
4569997
 
fa56382
4569997
fa56382
4569997
4c4becf
 
 
 
e9e87fd
d265d12
e9e87fd
4c4becf
 
 
 
 
 
53ec0c6
 
 
 
cde49ec
 
f7c166c
 
53ec0c6
4c4becf
 
 
fd6ebe3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c4becf
 
 
 
 
 
 
ff7ce40
4c4becf
 
652b9a5
4c4becf
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
---
language:
- en
license: apache-2.0
tags:
- text-classification
- emotion
- pytorch
datasets:
- emotion
metrics:
- Accuracy, F1 Score
thumbnail: https://avatars3.githubusercontent.com/u/32437151?s=460&u=4ec59abc8d21d5feea3dab323d23a5860e6996a4&v=4
model-index:
- name: bhadresh-savani/roberta-base-emotion
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: emotion
      type: emotion
      config: default
      split: test
    metrics:
    - type: accuracy
      value: 0.931
      name: Accuracy
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZjg5OTI4ZTlkY2VmZjYzNGEzZGQ3ZjczYzY5YjJmMGVmZDQ4ZWNiYTAyZTJiZjlmMTU2MjE1NTllMWFhYzU0MiIsInZlcnNpb24iOjF9.dc44cEsbu900M2s64GyVIWKPagBzwI-dPlfvh0NGyJFMGKOcypke9P2ary9fBZITrH3UF6lza3sCh7vWYZFHBQ
    - type: precision
      value: 0.9168321948556312
      name: Precision Macro
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiN2EzYTcxNTExNGU1MmFiZjE3NGE5MDIyMDU2M2U3OGExOTdjZDE5YWU2NDhmOTJlYWMzY2NkN2U5MmRmZTE0MiIsInZlcnNpb24iOjF9.4U7vJ3ALdUUxySMhVeb4Qa1tSp3wphSIZkRYNMujz-KrOZW8kkcmCde3ioStBg3Qqyf1powYd88uk1R7DuWRBA
    - type: precision
      value: 0.931
      name: Precision Micro
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMjhmZGRlYWE5ZTAzMmJiMzlmMWZiM2VlYjdiNzI0NjVmN2M2YzcxM2EzYTg0OTFiZTE1MjVmNzE5NGEzYTg2ZCIsInZlcnNpb24iOjF9.8eCHAK0rlZWnhBNQdh9kcuAeItmDUAgK3KkZ7eC-GyYhi4HT5dZiS6btcC5EjkYVOS4czcjzqxfVz4PuZgtLDQ
    - type: precision
      value: 0.9357445689014415
      name: Precision Weighted
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMDhhZTdkNzYzMjhjZjc4MTAxNWZiYjgzMjhhNjRiZWRmYjc5YTA0NTQ1MzllMTYxMTVkMDk4OTE0ZGEyMTNhMiIsInZlcnNpb24iOjF9.YIZfj2Eo1nMX2GVSfqJy-Cp7VBubfUh2LuOnU60sG5Lci8FdlNbAanS1IzAyxU3U29lqiTasxfS_yrwAj5cmBQ
    - type: recall
      value: 0.8743657671177089
      name: Recall Macro
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiM2Y2YTcyNzMwYzZiMmM1Yzc4YWZhNDM3ZDQyMjI1NWZhMjQyNmU5NTA0YmE2ZDBiZmY1MmUyZWRlMjRhMjFmYSIsInZlcnNpb24iOjF9.XKlFy_Cx4T4l7Otd8aAwWcI-fJ_dJ6V1Kp3uZm6OWjwCb1Do6mSdPFfwiMeBZZyfEIsNBnguegssZvHsOfTSAQ
    - type: recall
      value: 0.931
      name: Recall Micro
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNzgzN2JkNzAzZDRjNjJmZjNkY2RmYzVkMWEzYTMzZDU4NzJlYzBmOWE4MTU0MGU0MTJhM2JjZDdjODhlZDExOCIsInZlcnNpb24iOjF9.9tSVB4yNBdFXpH3equwo1ZaEnVUktO6lm93UEJ-luKhxo6wgS54OLjgDq7IpJYwa3lvYyjy-sxzQEe9ri31WAg
    - type: recall
      value: 0.931
      name: Recall Weighted
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMGVhZTIyMmVmOTU1YWNjMmZiZjNmOTNlNzlhZTk3NjhlZmMwZGFkZWQxZTlhZWUwZGQyN2JhOWQyNWQ3MTVhOCIsInZlcnNpb24iOjF9.2odv2fK7zH0_S_7wC3obONzjxOipDdjWvddhnGdMnrIN6CiZwLp7XgizpqcWbwAQ_9YJwjC-6wXpbq2jTvN0Bw
    - type: f1
      value: 0.8821236522209227
      name: F1 Macro
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZDI0YTUxOTA2M2ZjNGM1OTJlZDAzZTAxNTg4YjY3OWNmMjNmMTk0YWRjZTE2Y2ZmYWI1ZmU3ZmJmNzNjMjBlOCIsInZlcnNpb24iOjF9.P5-TbuEUrCtX9H7F-tKn8LI1RBPhoJwjJm_l853WTSzdLioThAtIK5HBG0xgXT2uB0Q8v94qH2b8cz1j_WonDg
    - type: f1
      value: 0.931
      name: F1 Micro
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYjNmNDgyMmFjODYwNjcwOTJiOGM2N2YwYjUyMDk5Yjk2Y2I3NmFmZGFhYjU0NGM2OGUwZmRjNjcxYTU3YzgzNSIsInZlcnNpb24iOjF9.2ZoRJwQWVIcl_Ykxce1MnZ3mSxBGxGeNYFPxt9mivo9yTi3gUE7ua6JRpVEOnOUbevlWxVkUUNnmOPFqBN1sCQ
    - type: f1
      value: 0.9300782840205046
      name: F1 Weighted
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMGE1OTcxNmNmMjQ3ZDAzYzk0N2Q1MGFjM2VhNWMyYmRjY2E3ZThjODExOTNlNWMxYzdlMWM2MDBiMTZhY2M2OSIsInZlcnNpb24iOjF9.r63SEArCiFB5m0ccV2q_t5uSOtjVnWdz4PfvCYUchm0JlrRC9YAm5oWKeO419wdyFY4rZFe014yv7sRcV-CgBQ
    - type: loss
      value: 0.15155883133411407
      name: loss
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiN2M4MmVlNjAzZjhiMWJlNWQxMDg5ZTRiYjFlZGYyMGMyYzU4M2IwY2E1M2E2MzA5NmU5ZjgwZTZmMDI5YjgzMyIsInZlcnNpb24iOjF9.kjgFJohkTxLKtzHJDlBvd6qolGQDSZLbrDE7C07xNGmarhTLc_A3MmLeC4MmQGOl1DxfnHflImIkdqPylyylDA
---
# robert-base-emotion

## Model description:
[roberta](https://arxiv.org/abs/1907.11692) is Bert with better hyperparameter choices so they said it's Robustly optimized Bert during pretraining.

[roberta-base](https://huggingface.co/roberta-base) finetuned on the emotion dataset using HuggingFace Trainer with below Hyperparameters
```
 learning rate 2e-5, 
 batch size 64,
 num_train_epochs=8,
```

## Model Performance Comparision on Emotion Dataset from Twitter:

| Model | Accuracy | F1 Score |  Test Sample per Second |
| --- | --- | --- | --- |
| [Distilbert-base-uncased-emotion](https://huggingface.co/bhadresh-savani/distilbert-base-uncased-emotion) | 93.8 | 93.79 | 398.69 |
| [Bert-base-uncased-emotion](https://huggingface.co/bhadresh-savani/bert-base-uncased-emotion) | 94.05 | 94.06 | 190.152 |
| [Roberta-base-emotion](https://huggingface.co/bhadresh-savani/roberta-base-emotion) | 93.95 | 93.97| 195.639 |
| [Albert-base-v2-emotion](https://huggingface.co/bhadresh-savani/albert-base-v2-emotion) | 93.6 | 93.65 | 182.794 |

## How to Use the model:
```python
from transformers import pipeline
classifier = pipeline("text-classification",model='bhadresh-savani/roberta-base-emotion', return_all_scores=True)
prediction = classifier("I love using transformers. The best part is wide range of support and its easy to use", )
print(prediction)

"""
Output:
[[
{'label': 'sadness', 'score': 0.002281982684507966}, 
{'label': 'joy', 'score': 0.9726489186286926}, 
{'label': 'love', 'score': 0.021365027874708176}, 
{'label': 'anger', 'score': 0.0026395076420158148}, 
{'label': 'fear', 'score': 0.0007162453257478774}, 
{'label': 'surprise', 'score': 0.0003483477921690792}
]]
"""
```

## Dataset:
[Twitter-Sentiment-Analysis](https://huggingface.co/nlp/viewer/?dataset=emotion).

## Training procedure
[Colab Notebook](https://github.com/bhadreshpsavani/ExploringSentimentalAnalysis/blob/main/SentimentalAnalysisWithDistilbert.ipynb)
follow the above notebook by changing the model name to roberta

## Eval results
```json
{
 'test_accuracy': 0.9395,
 'test_f1': 0.9397328860104454,
 'test_loss': 0.14367154240608215,
 'test_runtime': 10.2229,
 'test_samples_per_second': 195.639,
 'test_steps_per_second': 3.13
 }
```

## Reference:
* [Natural Language Processing with Transformer By Lewis Tunstall, Leandro von Werra, Thomas Wolf](https://learning.oreilly.com/library/view/natural-language-processing/9781098103231/)