bhavinjawade commited on
Commit
6a500b5
·
verified ·
1 Parent(s): 08c2b7e

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +78 -0
README.md ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ datasets:
4
+ - Intel/orca_dpo_pairs
5
+ ---
6
+
7
+ ## SOLAR-10B-OrcaDPO-Jawade
8
+
9
+ ### Overview
10
+ This model card is instruction finetuned version of `upstage/SOLAR-10.7B-Instruct-v1.0` model. Trained on the Intel DPO Orca dataset using LoRA. Though it should be noted SOLAR-10.7B paper states that the
11
+ original model for alignment was trained on Intel ORCA DPO pairs. Retraining using DPO and LoRA shows slight (<1%) improvement on OpenLLM Leaderboard benchmarks against `SOLAR 10.7B-Instruct` and significant over `SOLAR 10.7B`
12
+
13
+ ![model_card_image](SOLAR_ORCA.png)
14
+
15
+ ## How to Use This Model
16
+
17
+ To use the model `bhavinjawade/SOLAR-10B-OrcaDPO-Jawade`, follow these steps:
18
+
19
+ 1. **Import and Load the Model and Tokenizer**
20
+ Begin by importing the model and tokenizer. Load them using the `from_pretrained` method.
21
+
22
+ ```python
23
+ from transformers import AutoModelForCausalLM, AutoTokenizer
24
+ model = AutoModelForCausalLM.from_pretrained("bhavinjawade/SOLAR-10B-OrcaDPO-Jawade")
25
+ tokenizer = AutoTokenizer.from_pretrained("bhavinjawade/SOLAR-10B-OrcaDPO-Jawade")
26
+ ```
27
+
28
+ 2. **Format the Prompt**
29
+ Format the chat input as a list of messages, each with a role ('system' or 'user') and content.
30
+
31
+ ```python
32
+ message = [
33
+ {"role": "system", "content": "You are a helpful assistant chatbot."},
34
+ {"role": "user", "content": "Is the universe real? or is it a simulation? whats your opinion?"}
35
+ ]
36
+ prompt = tokenizer.apply_chat_template(message, add_generation_prompt=True, tokenize=False)
37
+ ```
38
+
39
+ 3. **Create a Pipeline**
40
+ Set up a pipeline for text generation with the loaded model and tokenizer.
41
+
42
+ ```python
43
+ pipeline = transformers.pipeline(
44
+ "text-generation",
45
+ model=model,
46
+ tokenizer=tokenizer
47
+ )
48
+ ```
49
+
50
+ 4. **Generate Text**
51
+ Use the pipeline to generate a sequence of text based on the prompt. You can adjust parameters like temperature and top_p for different styles of responses.
52
+
53
+ ```python
54
+ sequences = pipeline(
55
+ prompt,
56
+ do_sample=True,
57
+ temperature=0.7,
58
+ top_p=0.9,
59
+ num_return_sequences=1,
60
+ max_length=200,
61
+ )
62
+ print(sequences[0]['generated_text'])
63
+ ```
64
+
65
+ This setup allows you to utilize the capabilities of the **bhavinjawade/SOLAR-10B-OrcaDPO-Jawade** model for generating responses to chat inputs.
66
+
67
+ ### License
68
+ - **Type**: MIT License
69
+ - **Details**: This license permits reuse, modification, and distribution for both private and commercial purposes under the terms of the MIT License.
70
+
71
+ ### Model Details
72
+ - **Model Name**: SOLAR-10.7B-Instruct-v1.0
73
+ - **Organization**: Upstage
74
+ - **Training Dataset**: Intel/orca_dpo_pairs
75
+ - **Technique Used**: LoRA (Low-Rank Adaptation)
76
+
77
+ ### Contact Information
78
+ - https://bhavinjawade.github.io