---
base_model: BAAI/bge-base-en-v1.5
datasets:
- bhlim/patentmatch_for_finetuning
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:10136
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: The UE sends the uplink signal including the identifier of the
uplink serving node to the downlink serving node and in this case the downlink
serving node learns the mapping relationship among the UE the uplink serving node
and the downlink serving node.The UE sends the uplink signal including the identifier
of the downlink serving node to the uplink serving node an in thiscase the uplink
serving node learns the mapping relationship among the UE the uplink serving node
and the downlink serving node.
sentences:
- A terminal for use in a wireless communication network comprising a plurality
of base stations the terminal arranged to communicate with the network via at
least two cells of a plurality of cells and to transmit a request for uplink resources
wherein the terminal is arranged to select at least one cell from among said plurality
of said cells for transmission of said request a resource for transmission of
said request from among a plurality of resources provided by a cell and a characteristic
of a signal used to transmit said request and to perform the selection in dependence
on at least one of the reason for said request the characteristics of an uplink
channel for transmission of said request and the preference of the network.
- The electronic device of any of claims 15 wherein the processor is further configured
to check whether the specific audio data is stored at the memory in response to
a play request on the specific audio data.
- The system of claim 1 or claim 2 comprising a plurality of said radiation emitting
devices.
- source_sentence: Further in the example of Fig.35 the sound adjusting circuit 210
controls the sound outputs of the first to fourth speakers 161 to 164 based on
the sound data from the first to fifth detection sensors 420 to 428 so that the
first sound corresponding to the second display image is localized in the first
area 810 where the occupant of the driver seat 13 and the occupant of the rear
seat 18 equipped with the headrest 25 are located.Likewise the sound adjusting
circuit 210 controls the sound outputs of the first to fourth speakers 161 to
164 based on the sound data from the first to fifth detection sensors 420 to 428
so that the second sound corresponding to the first display image is localized
in the second area 820 where the occupant of the assistant drivers seat 12 and
the occupants of the rear seats 18 equipped with the headrests 26 and 27 respectively
are located.Accordingly the occupant of the rear seat 18 equipped with the headrest
26 who is located in the crosstalk area 603 in Fig.33 can now hear the second
sound clearly.
sentences:
- A gas turbine engine comprising a bladed rotor assembly 100200300400 according
to any one of Claims 1 to 9.
- The method of claim 1 further comprising sensing a distance between the display
and a user wherein applying the sound setting comprises applying the sound setting
based on the sensed distance between the display and the user and the obtained
curvature of the panel of the display.
- A developer carrying member that is capable of carrying a developer on a surface
thereof and that supplies the developer carried on the surface to a surface of
an image bearing member when a voltage is applied thereto comprising an elastic
layer and a surface layer that covers the elastic layer contains alumina and has
a higher volume resistivity than the elastic layer.
- source_sentence: In the example of fig.1 a user 107 who arrives in the underground
area 109 and who has not yet subscribed to the electronic ticket service may subscribe
to the service by connecting his Bluetooth device 107a to a Bluetooth access point
104 of the service provider via a Bluetooth service device 104a.At the access
point 104 the customer 104 may perform a payment transaction select a desired
subscription and receive a link key.With the link key the users Bluetooth device
107a may subsequently establish secure Bluetooth connections with the Bluetooth
transceivers 101 and 102af.
sentences:
- A wireless communications device 102 for setting up a local service session in
a shortrange wireless communication network comprising means for sending 222 a
request for preconfiguration information over a longrange network 104 to a remote
destination 112 the preconfiguration information enabling establishment of the
local service session with a proximate wireless communications device 110means
for receiving 222 from the remote destination 112 the requested preconfiguration
information wherein the requested preconfiguration information includes one or
more security keys for performing an authentication process with the proximate
wireless communications device 110 over shortrange wireless communication means
for performing 220 an authentication process for establishing the local service
session with the proximate wireless communications device 110 over the shortrange
wireless communication using the received one or more security keys and means
for establishing 220 the local service session with the proximate wireless communications
device 112 over the shortrange wireless communications after the authentication
process.
- The mobile terminal any one of claims 2 to 4 wherein the controller 180 is further
configured to differently process a color of the image corresponding to the trajectory
of the second touch based on a position of the first touch.
- A detergent box assembly for a washing machine comprising a detergent box a distributor
box having a front plate a rear plate and a receiving chamber provided therebetween
said receiving chamber configured to store a laundry treat agent the distributor
box being movably disposed within the detergent box and adapted to move between
an open position and a closed position a keypress being provided in the front
plate and a driving subassembly disposed in at least one of the detergent box
and the distributor box and configured to drive the distributor box to move from
the closed position to the open position when the keypress is pressed.
- source_sentence: The step of determining may comprisemeasuring a distance between
each surrogate server and each subnetwork according to the subnetwork of the user
selecting a surrogate server with the smallest distance.
sentences:
- The computer system of Claim 13 comprising a memory storing instructions which
when implemented on the one or more processors configure the computer system to
carry out the method of any one of Claims 1 to 10
- A cooking oven 1 comprising a housing 2 a cooking cavity 3 formed in the housing
2 and closable by a door 5 heating means 6 6 placed in thermal exchange relationship
with the cooking cavity 3 ventilating means placed in the housing 2 and having
one or more electrical fans 7 8 7 8 adapted to ventilate on one or more thermally
sensitive areas of the oven 1 a control system 10 connected to the heating means
6 6 and to the ventilating means and having a temperature detector 12 associated
with the cooking cavity 3 wherein the control system is configured to activate
and deactivate the heating means 6 6 depending on a temperature detected by the
temperature detector 12 characterized in that the control system 10 activates
and deactivates at least one of said one or more fans 7 8 7 8 automatically together
with the respective activation and deactivation of the heating means 6 6.
- The method of claim 12 wherein selecting the target control parameter further
comprises for the respective selected control parameters comparing the initial
turbine output with the predicted turbine output while operating the selected
control parameter with the adjustment of the selected control parameter to determine
an adjustment differential and selecting the target control parameter having the
target adjustment by using the adjustment differential of the target control parameter.
- source_sentence: Referring to FIG.32 a a sink device 3200 is designed to display
thumbnail images in the metadata of contents received from source devices connected
via an integrated wire interface.As mentioned in the foregoing description if
a remote controller 3250 capable of outputting a pointing signal is situated within
a region of a specific thumbnail image 3260 side information e.g.Amanda 1st album
singer.Song etc.is displayed together.
sentences:
- The method of any one of claims 8 to 12 wherein the requesting for the broadcast
channel information comprises transmitting to the server image data obtained by
capturing the content being reproduced by the display apparatus or audio data
obtained by recording the content for a certain time.
- The electrode assembly of any one of the preceding claims wherein the first electrode
comprises a substrate 113 wherein the first active material layer comprises active
material layers 112 on both surfaces of the substrate and the ceramic layer comprises
ceramic material layers 50 on both surfaces of the substrate.
- A method according to claim 1 wherein said topsheet assembly is a threeply laminate
comprising an acquisition layer a nonwoven layer and a cuff assembly.
model-index:
- name: BGE base PatentMatch Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.042620363062352014
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.10142067876874507
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.14483030781373324
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.23204419889502761
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.042620363062352014
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.03380689292291502
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.02896606156274665
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.023204419889502764
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.042620363062352014
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.10142067876874507
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.14483030781373324
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.23204419889502761
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.12169609468606697
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.08838588842535165
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.10140867877546615
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.04222573007103394
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.09352801894238358
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.14285714285714285
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.22454617205998423
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.04222573007103394
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.031176006314127862
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.028571428571428574
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.02245461720599842
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.04222573007103394
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.09352801894238358
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.14285714285714285
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.22454617205998423
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.11822400593872298
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.08611580912291245
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.09959411357742169
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.04025256511444357
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.09155485398579322
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.13970007892659828
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.21981057616416733
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.04025256511444357
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.03051828466193107
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.02794001578531966
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.021981057616416732
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.04025256511444357
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.09155485398579322
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.13970007892659828
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.21981057616416733
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.11513294301691931
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.08350856917352567
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.09631638060202527
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.037884767166535126
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.08602999210734018
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.13180741910023677
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.2079715864246251
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.037884767166535126
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.028676664035780054
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.02636148382004736
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.02079715864246251
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.037884767166535126
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.08602999210734018
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.13180741910023677
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.2079715864246251
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.10894233297304821
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.07907489883614581
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.09087791679720966
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.032754538279400155
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.07419100236779795
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.11444356748224152
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.18468823993685873
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.032754538279400155
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.024730334122599312
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.022888713496448304
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.018468823993685875
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.032754538279400155
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.07419100236779795
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.11444356748224152
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.18468823993685873
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.0959638876946607
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.06921471166735564
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.08022788346205763
name: Cosine Map@100
---
# BGE base PatentMatch Matryoshka
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) on the [bhlim/patentmatch_for_finetuning](https://huggingface.co/datasets/bhlim/patentmatch_for_finetuning) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- [bhlim/patentmatch_for_finetuning](https://huggingface.co/datasets/bhlim/patentmatch_for_finetuning)
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("bhlim/bge-base-patentmatch")
# Run inference
sentences = [
'Referring to FIG.32 a a sink device 3200 is designed to display thumbnail images in the metadata of contents received from source devices connected via an integrated wire interface.As mentioned in the foregoing description if a remote controller 3250 capable of outputting a pointing signal is situated within a region of a specific thumbnail image 3260 side information e.g.Amanda 1st album singer.Song etc.is displayed together.',
'The method of any one of claims 8 to 12 wherein the requesting for the broadcast channel information comprises transmitting to the server image data obtained by capturing the content being reproduced by the display apparatus or audio data obtained by recording the content for a certain time.',
'The electrode assembly of any one of the preceding claims wherein the first electrode comprises a substrate 113 wherein the first active material layer comprises active material layers 112 on both surfaces of the substrate and the ceramic layer comprises ceramic material layers 50 on both surfaces of the substrate.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.0426 |
| cosine_accuracy@3 | 0.1014 |
| cosine_accuracy@5 | 0.1448 |
| cosine_accuracy@10 | 0.232 |
| cosine_precision@1 | 0.0426 |
| cosine_precision@3 | 0.0338 |
| cosine_precision@5 | 0.029 |
| cosine_precision@10 | 0.0232 |
| cosine_recall@1 | 0.0426 |
| cosine_recall@3 | 0.1014 |
| cosine_recall@5 | 0.1448 |
| cosine_recall@10 | 0.232 |
| cosine_ndcg@10 | 0.1217 |
| cosine_mrr@10 | 0.0884 |
| **cosine_map@100** | **0.1014** |
#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.0422 |
| cosine_accuracy@3 | 0.0935 |
| cosine_accuracy@5 | 0.1429 |
| cosine_accuracy@10 | 0.2245 |
| cosine_precision@1 | 0.0422 |
| cosine_precision@3 | 0.0312 |
| cosine_precision@5 | 0.0286 |
| cosine_precision@10 | 0.0225 |
| cosine_recall@1 | 0.0422 |
| cosine_recall@3 | 0.0935 |
| cosine_recall@5 | 0.1429 |
| cosine_recall@10 | 0.2245 |
| cosine_ndcg@10 | 0.1182 |
| cosine_mrr@10 | 0.0861 |
| **cosine_map@100** | **0.0996** |
#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.0403 |
| cosine_accuracy@3 | 0.0916 |
| cosine_accuracy@5 | 0.1397 |
| cosine_accuracy@10 | 0.2198 |
| cosine_precision@1 | 0.0403 |
| cosine_precision@3 | 0.0305 |
| cosine_precision@5 | 0.0279 |
| cosine_precision@10 | 0.022 |
| cosine_recall@1 | 0.0403 |
| cosine_recall@3 | 0.0916 |
| cosine_recall@5 | 0.1397 |
| cosine_recall@10 | 0.2198 |
| cosine_ndcg@10 | 0.1151 |
| cosine_mrr@10 | 0.0835 |
| **cosine_map@100** | **0.0963** |
#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.0379 |
| cosine_accuracy@3 | 0.086 |
| cosine_accuracy@5 | 0.1318 |
| cosine_accuracy@10 | 0.208 |
| cosine_precision@1 | 0.0379 |
| cosine_precision@3 | 0.0287 |
| cosine_precision@5 | 0.0264 |
| cosine_precision@10 | 0.0208 |
| cosine_recall@1 | 0.0379 |
| cosine_recall@3 | 0.086 |
| cosine_recall@5 | 0.1318 |
| cosine_recall@10 | 0.208 |
| cosine_ndcg@10 | 0.1089 |
| cosine_mrr@10 | 0.0791 |
| **cosine_map@100** | **0.0909** |
#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.0328 |
| cosine_accuracy@3 | 0.0742 |
| cosine_accuracy@5 | 0.1144 |
| cosine_accuracy@10 | 0.1847 |
| cosine_precision@1 | 0.0328 |
| cosine_precision@3 | 0.0247 |
| cosine_precision@5 | 0.0229 |
| cosine_precision@10 | 0.0185 |
| cosine_recall@1 | 0.0328 |
| cosine_recall@3 | 0.0742 |
| cosine_recall@5 | 0.1144 |
| cosine_recall@10 | 0.1847 |
| cosine_ndcg@10 | 0.096 |
| cosine_mrr@10 | 0.0692 |
| **cosine_map@100** | **0.0802** |
## Training Details
### Training Dataset
#### bhlim/patentmatch_for_finetuning
* Dataset: [bhlim/patentmatch_for_finetuning](https://huggingface.co/datasets/bhlim/patentmatch_for_finetuning) at [8d60f21](https://huggingface.co/datasets/bhlim/patentmatch_for_finetuning/tree/8d60f211ba8eb3b64fcdd4615dd0d297cf713843)
* Size: 10,136 training samples
* Columns: positive
and anchor
* Approximate statistics based on the first 1000 samples:
| | positive | anchor |
|:--------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string |
| details |
Furthermore according to this liquid consuming apparatus if the decompression level acting on the liquid sensing chamber 21 of the liquid container 1 i.e.the pressure loss arising in the connecting passage between the liquid storage portion 7 and the liquid sensing chamber 21 due to the flow rate outflowing from the liquid storage portion 7 because of distension of the diaphragm pump through application of the external force when external force is applied in the direction of expansion of volume of the diaphragm pump 42 asdepicted in FIG.6 has been set to a low level if sufficient liquid is present in the liquid container 1 the liquid sensing chamber 21 will experience substantially no change in volume.
| The liquid cartridge according to any of claims 4 to 5 further comprising a ground terminal 175c 176c 177c positioned in the second line.
|
| It is highly desirable for tires to have good wet skid resistance low rolling resistance and good wear characteristics.It has traditionally been very difficult to improve a tires wear characteristics without sacrificing its wet skid resistance and traction characteristics.These properties depend to a great extent on the dynamic viscoelastic properties of the rubbers utilized in making the tire.
| The pneumatic tire of at least one of the previous claims wherein the rubber composition comprises from 5 to 20 phr of the oil and from 45 to 70 phr of the terpene phenol resin.
|
| Before setting the environment of the mobile communication terminal a user stores a multimedia message composed of different kinds of contents i.e.images sounds and texts.For example reference block 201 indicates a multimedia message composed of several images sounds and texts.The user can select an image A a sound A and a text A for environment setting elements of the mobile communication terminal from the contents of the multimedia message and construct a theme like in block 203 using the selected image A sound A and text A.The MPU 101 maps the contents of the theme to environment setting elements of the mobile communication terminal i.e.a background screen a ringtone and a user name like in block 205.The MPU 101 then sets the environment of the mobile communication terminal using the mapped elements like in block 207 thereby automatically and collectively changing the environment of the mobile communication terminal.Mapping information about mapping between the selected contents of the multimediamessage and the environment setting elements of the mobile communication terminal is stored in the flash RAM 107.
| A terminal for processing data comprising an output unit configured to output a chatting service window a receiving unit configured to receive a request for executing a chatting service and a first download request for downloading first data through the chatting service from a user and a controller configured to control to output the first data downloaded in response to the received first download request to a background screen of the chatting service window.
|
* Loss: [MatryoshkaLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates
#### All Hyperparameters