--- license: apache-2.0 tags: - generated_from_trainer datasets: - biglam/nls_chapbook_illustrations widget: - src: >- https://huggingface.co/davanstrien/detr-resnet-50_fine_tuned_nls_chapbooks/resolve/main/Chapbook_Jack_the_Giant_Killer.jpg example_title: Jack the Giant Killer - src: >- https://huggingface.co/davanstrien/detr-resnet-50_fine_tuned_nls_chapbooks/resolve/main/PN970_G6_V3_1846_DUP_0011.jpg example_title: History of Valentine and Orson base_model: facebook/detr-resnet-50 model-index: - name: detr-resnet-50_fine_tuned_nls_chapbooks results: [] library_name: transformers pipeline_tag: object-detection --- # detr-resnet-50_fine_tuned_nls_chapbooks This model is a fine-tuned version of [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) on the `biglam/nls_chapbook_illustrations` dataset. This dataset contains images of chapbooks with bounding boxes for the illustrations contained on some of the pages. ## Model description More information needed ## Intended uses & limitations ### Using in a transformer pipeline The easiest way to use this model is via a [Transformers pipeline](https://huggingface.co/docs/transformers/main/en/pipeline_tutorial#vision-pipeline). To do this, you should first load the model and feature extractor: ```python from transformers import AutoFeatureExtractor, AutoModelForObjectDetection extractor = AutoFeatureExtractor.from_pretrained("davanstrien/detr-resnet-50_fine_tuned_nls_chapbooks") model = AutoModelForObjectDetection.from_pretrained("davanstrien/detr-resnet-50_fine_tuned_nls_chapbooks") ``` Then you can create a pipeline for object detection using the model. ```python from transformers import pipeline pipe = pipeline('object-detection',model=model, feature_extractor=extractor) ``` To use this to make predictions pass in an image (or a file-path/URL for the image): ```python >>> pipe("https://huggingface.co/davanstrien/detr-resnet-50_fine_tuned_nls_chapbooks/resolve/main/Chapbook_Jack_the_Giant_Killer.jpg") [{'box': {'xmax': 290, 'xmin': 70, 'ymax': 510, 'ymin': 261}, 'label': 'early_printed_illustration', 'score': 0.998455286026001}] ``` More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1 ### Example image credits https://commons.wikimedia.org/wiki/File:Chapbook_Jack_the_Giant_Killer.jpg https://archive.org/details/McGillLibrary-PN970_G6_V3_1846-1180/