Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
metrics:
|
6 |
+
- f1
|
7 |
+
- accuracy
|
8 |
+
pipeline_tag: text-classification
|
9 |
+
tags:
|
10 |
+
- social science
|
11 |
+
- covid
|
12 |
+
---
|
13 |
+
|
14 |
+
# SCORE Claim Identification
|
15 |
+
|
16 |
+
This is a model card for detecting claims from an abstract of social science publications.
|
17 |
+
The model takes an abstract, performs sentence tokenization, and predict a claim probability of each sentence.
|
18 |
+
This model card is released by training on a [SCORE](https://www.cos.io/score) dataset.
|
19 |
+
|
20 |
+
```py
|
21 |
+
import spacy
|
22 |
+
from transformers import AutoTokenizer
|
23 |
+
from transformers import AutoModelForSequenceClassification
|
24 |
+
|
25 |
+
nlp = spacy.load("en_core_web_lg")
|
26 |
+
model_name = "biodatlab/score-claim-identification"
|
27 |
+
tokenizer_name = "allenai/scibert_scivocab_uncased"
|
28 |
+
|
29 |
+
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
|
30 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
31 |
+
|
32 |
+
def inference(abstract: str):
|
33 |
+
"""
|
34 |
+
Split an abstract into sentences and perform claim identification.
|
35 |
+
"""
|
36 |
+
if abstract.strip() == "":
|
37 |
+
return "Please provide an abstract as an input."
|
38 |
+
claims = []
|
39 |
+
sents = [sent.text for sent in nlp(abstract).sents] # a list of sentences
|
40 |
+
inputs = tokenizer(
|
41 |
+
sents,
|
42 |
+
return_tensors="pt",
|
43 |
+
truncation=True,
|
44 |
+
padding="longest"
|
45 |
+
)
|
46 |
+
logits = model(**inputs).logits
|
47 |
+
preds = logits.argmax(dim=1) # convert logits to predictions
|
48 |
+
claims = [sent for sent, pred in zip(sents, preds) if pred == 1]
|
49 |
+
if len(claims) > 0:
|
50 |
+
return ".\n".join(claims)
|
51 |
+
else:
|
52 |
+
return "No claims found from a given abstract."
|
53 |
+
|
54 |
+
claims = inference(abstract) # string of claim joining with \n
|
55 |
+
```
|
56 |
+
|
57 |
+
See more on `gradio` application in `biodatlab` space.
|