bluebalam commited on
Commit
1708eb9
·
1 Parent(s): e539bf4

adding more info to model card.

Browse files
Files changed (1) hide show
  1. README.md +40 -0
README.md CHANGED
@@ -12,3 +12,43 @@ tags:
12
  #metrics:
13
  #- {metric_0} # Example: wer. Use metric id from https://hf.co/metrics
14
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
  #metrics:
13
  #- {metric_0} # Example: wer. Use metric id from https://hf.co/metrics
14
  ---
15
+
16
+ # `paper-rec` Model Card
17
+
18
+ Last updated: 2022-02-04
19
+
20
+ ## Model Details
21
+ `paper-rec` goal is to recommend users what scientific papers to read next based on their preferences. This is a test model used to explore Hugging Face Hub capabilities and identify requirements to enable support for recommendation task in the ecosystem.
22
+
23
+ ### Model date
24
+ 2022-02-04
25
+
26
+ ### Model type
27
+ Recommender System model with support of a Language Model for feature extraction.
28
+
29
+ ### Paper & samples
30
+ The overall idea for `paper-rec` test model is inspired by this work: [NU:BRIEF – A Privacy-aware Newsletter Personalization Engine for Publishers](https://arxiv.org/abs/2109.03955).
31
+
32
+ However, for `paper-rec`, we use a different language model more suitable for longer text, namely *Sentence Transformers*: [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084).
33
+
34
+ ## Model Use
35
+ The intended direct users are recommender systems' practitioners and enthusiasts that would like to experiment with the task of scientific paper recommendation.
36
+
37
+ ## Data, Performance, and Limitations
38
+ ### Data
39
+ The data used for this model corresponds to the [RSS news feeds for arXiv updates](https://arxiv.org/help/rss) accessed on 2022-02-04. In particular to the ones related to Machine Learning and AI:
40
+
41
+ 1. [Artificial Intelligence](http://arxiv.org/rss/cs.AI)
42
+ 1. [Computation and Language](http://arxiv.org/rss/cs.CL)
43
+ 1. [Computer Vision and Pattern Recognition](http://arxiv.org/rss/cs.CV)
44
+ 1. [Information Retrieval](http://arxiv.org/rss/cs.IR)
45
+ 1. [Machine Learning (cs)](http://arxiv.org/rss/cs.LG)
46
+ 1. [Machine Learning (stat)](http://arxiv.org/rss/stat.ML)
47
+
48
+ ### Performance
49
+ N/A
50
+
51
+ ## Limitations
52
+ The model is limited to the papers fetched on 2022-02-04, that is, those papers are the only ones it can recommend.
53
+
54
+