--- language: - en license: mit tags: - recsys - pytorch - sentence_transformers #datasets: #- {dataset_0} # Example: common_voice. Use dataset id from https://hf.co/datasets #metrics: #- {metric_0} # Example: wer. Use metric id from https://hf.co/metrics --- # `paper-rec` Model Card Last updated: 2022-02-04 ## Model Details `paper-rec` goal is to recommend users what scientific papers to read next based on their preferences. This is a test model used to explore Hugging Face Hub capabilities and identify requirements to enable support for recommendation task in the ecosystem. ### Model date 2022-02-04 ### Model type Recommender System model with support of a Language Model for feature extraction. ### Paper & samples The overall idea for `paper-rec` test model is inspired by this work: [NU:BRIEF – A Privacy-aware Newsletter Personalization Engine for Publishers](https://arxiv.org/abs/2109.03955). However, for `paper-rec`, we use a different language model more suitable for longer text, namely *Sentence Transformers*: [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084), in particular: [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). ## Model Use The intended direct users are recommender systems' practitioners and enthusiasts that would like to experiment with the task of scientific paper recommendation. ## Data, Performance, and Limitations ### Data The data used for this model corresponds to the [RSS news feeds for arXiv updates](https://arxiv.org/help/rss) accessed on 2022-02-04. In particular to the ones related to Machine Learning and AI: 1. [Artificial Intelligence](http://arxiv.org/rss/cs.AI) 1. [Computation and Language](http://arxiv.org/rss/cs.CL) 1. [Computer Vision and Pattern Recognition](http://arxiv.org/rss/cs.CV) 1. [Information Retrieval](http://arxiv.org/rss/cs.IR) 1. [Machine Learning (cs)](http://arxiv.org/rss/cs.LG) 1. [Machine Learning (stat)](http://arxiv.org/rss/stat.ML) ### Performance N/A ## Limitations The model is limited to the papers fetched on 2022-02-04, that is, those papers are the only ones it can recommend.