--- library_name: transformers license: other base_model: deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B tags: - llama-factory - full - generated_from_trainer model-index: - name: train_2025-01-23-00-42-56 results: [] --- # train_2025-01-23-00-42-56 This model is a fine-tuned version of [deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B) on the smoltalk_chinese dataset. It achieves the following results on the evaluation set: - Loss: 1.9459 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - total_eval_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 2.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.8719 | 1.7649 | 5000 | 1.9466 | ### Framework versions - Transformers 4.46.1 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3 ### MISC ```python _register_template( name="deepseekr1", default_system="You are a helpful and harmless assistant. You should think step-by-step. Output your thoughts in tags.", format_prefix=EmptyFormatter(slots=[{"bos_token"}]), format_system=StringFormatter(slots=["{{content}}"]), format_user=StringFormatter( slots=[ "<|User|>{{content}}<|Assistant|>" ] ), stop_words=["<|end▁of▁sentence|>"], ) ```