--- base_model: airesearch/wangchanberta-base-att-spm-uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: lst20-sent-segment results: [] --- # lst20-sent-segment This model is a fine-tuned version of [airesearch/wangchanberta-base-att-spm-uncased](https://huggingface.co/airesearch/wangchanberta-base-att-spm-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1513 - Precision: 0.7125 - Recall: 0.5426 - F1: 0.6160 - Accuracy: 0.9403 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1842 | 1.0 | 1274 | 0.1596 | 0.6990 | 0.4995 | 0.5827 | 0.9361 | | 0.1622 | 2.0 | 2548 | 0.1513 | 0.7052 | 0.5330 | 0.6071 | 0.9389 | | 0.1554 | 3.0 | 3822 | 0.1513 | 0.7125 | 0.5426 | 0.6160 | 0.9403 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0