bobox commited on
Commit
137a5fa
·
verified ·
1 Parent(s): 75953c5

10 epoch 32 batch

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,144 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: []
3
+ library_name: sentence-transformers
4
+ tags:
5
+ - sentence-transformers
6
+ - sentence-similarity
7
+ - feature-extraction
8
+ base_model: microsoft/deberta-v3-small
9
+ datasets: []
10
+ widget: []
11
+ pipeline_tag: sentence-similarity
12
+ ---
13
+
14
+ # SentenceTransformer based on microsoft/deberta-v3-small
15
+
16
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
17
+
18
+ ## Model Details
19
+
20
+ ### Model Description
21
+ - **Model Type:** Sentence Transformer
22
+ - **Base model:** [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) <!-- at revision a36c739020e01763fe789b4b85e2df55d6180012 -->
23
+ - **Maximum Sequence Length:** 512 tokens
24
+ - **Output Dimensionality:** 768 tokens
25
+ - **Similarity Function:** Cosine Similarity
26
+ <!-- - **Training Dataset:** Unknown -->
27
+ <!-- - **Language:** Unknown -->
28
+ <!-- - **License:** Unknown -->
29
+
30
+ ### Model Sources
31
+
32
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
33
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
34
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
35
+
36
+ ### Full Model Architecture
37
+
38
+ ```
39
+ SentenceTransformer(
40
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DebertaV2Model
41
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
42
+ )
43
+ ```
44
+
45
+ ## Usage
46
+
47
+ ### Direct Usage (Sentence Transformers)
48
+
49
+ First install the Sentence Transformers library:
50
+
51
+ ```bash
52
+ pip install -U sentence-transformers
53
+ ```
54
+
55
+ Then you can load this model and run inference.
56
+ ```python
57
+ from sentence_transformers import SentenceTransformer
58
+
59
+ # Download from the 🤗 Hub
60
+ model = SentenceTransformer("bobox/DeBERTaV3-small-GeneralSentenceTransformer-v2")
61
+ # Run inference
62
+ sentences = [
63
+ 'The weather is lovely today.',
64
+ "It's so sunny outside!",
65
+ 'He drove to the stadium.',
66
+ ]
67
+ embeddings = model.encode(sentences)
68
+ print(embeddings.shape)
69
+ # [3, 768]
70
+
71
+ # Get the similarity scores for the embeddings
72
+ similarities = model.similarity(embeddings, embeddings)
73
+ print(similarities.shape)
74
+ # [3, 3]
75
+ ```
76
+
77
+ <!--
78
+ ### Direct Usage (Transformers)
79
+
80
+ <details><summary>Click to see the direct usage in Transformers</summary>
81
+
82
+ </details>
83
+ -->
84
+
85
+ <!--
86
+ ### Downstream Usage (Sentence Transformers)
87
+
88
+ You can finetune this model on your own dataset.
89
+
90
+ <details><summary>Click to expand</summary>
91
+
92
+ </details>
93
+ -->
94
+
95
+ <!--
96
+ ### Out-of-Scope Use
97
+
98
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
99
+ -->
100
+
101
+ <!--
102
+ ## Bias, Risks and Limitations
103
+
104
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
105
+ -->
106
+
107
+ <!--
108
+ ### Recommendations
109
+
110
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
111
+ -->
112
+
113
+ ## Training Details
114
+
115
+ ### Framework Versions
116
+ - Python: 3.10.12
117
+ - Sentence Transformers: 3.0.1
118
+ - Transformers: 4.41.2
119
+ - PyTorch: 2.3.0+cu121
120
+ - Accelerate: 0.31.0
121
+ - Datasets: 2.20.0
122
+ - Tokenizers: 0.19.1
123
+
124
+ ## Citation
125
+
126
+ ### BibTeX
127
+
128
+ <!--
129
+ ## Glossary
130
+
131
+ *Clearly define terms in order to be accessible across audiences.*
132
+ -->
133
+
134
+ <!--
135
+ ## Model Card Authors
136
+
137
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
138
+ -->
139
+
140
+ <!--
141
+ ## Model Card Contact
142
+
143
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
144
+ -->
added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "[MASK]": 128000
3
+ }
config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "microsoft/deberta-v3-small",
3
+ "architectures": [
4
+ "DebertaV2Model"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "hidden_act": "gelu",
8
+ "hidden_dropout_prob": 0.1,
9
+ "hidden_size": 768,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 3072,
12
+ "layer_norm_eps": 1e-07,
13
+ "max_position_embeddings": 512,
14
+ "max_relative_positions": -1,
15
+ "model_type": "deberta-v2",
16
+ "norm_rel_ebd": "layer_norm",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 6,
19
+ "pad_token_id": 0,
20
+ "pooler_dropout": 0,
21
+ "pooler_hidden_act": "gelu",
22
+ "pooler_hidden_size": 768,
23
+ "pos_att_type": [
24
+ "p2c",
25
+ "c2p"
26
+ ],
27
+ "position_biased_input": false,
28
+ "position_buckets": 256,
29
+ "relative_attention": true,
30
+ "share_att_key": true,
31
+ "torch_dtype": "float32",
32
+ "transformers_version": "4.41.2",
33
+ "type_vocab_size": 0,
34
+ "vocab_size": 128100
35
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.3.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e75f9f0d0ccf1ea68d57e5e49eadbe854516a7a239c28fe45742d13c727c0aae
3
+ size 565251810
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "[CLS]",
3
+ "cls_token": "[CLS]",
4
+ "eos_token": "[SEP]",
5
+ "mask_token": "[MASK]",
6
+ "pad_token": "[PAD]",
7
+ "sep_token": "[SEP]",
8
+ "unk_token": {
9
+ "content": "[UNK]",
10
+ "lstrip": false,
11
+ "normalized": true,
12
+ "rstrip": false,
13
+ "single_word": false
14
+ }
15
+ }
spm.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c679fbf93643d19aab7ee10c0b99e460bdbc02fedf34b92b05af343b4af586fd
3
+ size 2464616
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[CLS]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "128000": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "[CLS]",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "[CLS]",
47
+ "do_lower_case": false,
48
+ "eos_token": "[SEP]",
49
+ "mask_token": "[MASK]",
50
+ "model_max_length": 1000000000000000019884624838656,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "sp_model_kwargs": {},
54
+ "split_by_punct": false,
55
+ "tokenizer_class": "DebertaV2Tokenizer",
56
+ "unk_token": "[UNK]",
57
+ "vocab_type": "spm"
58
+ }