trained on the initial 100k + 100k
Browse files- 1_Pooling/config.json +10 -0
- README.md +507 -0
- config.json +27 -0
- config_sentence_transformers.json +10 -0
- merges.txt +0 -0
- modules.json +14 -0
- pytorch_model.bin +3 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +15 -0
- tokenizer.json +0 -0
- tokenizer_config.json +57 -0
- vocab.json +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,507 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: []
|
3 |
+
library_name: sentence-transformers
|
4 |
+
tags:
|
5 |
+
- sentence-transformers
|
6 |
+
- sentence-similarity
|
7 |
+
- feature-extraction
|
8 |
+
- generated_from_trainer
|
9 |
+
- dataset_size:300000
|
10 |
+
- loss:DenoisingAutoEncoderLoss
|
11 |
+
base_model: FacebookAI/roberta-base
|
12 |
+
datasets: []
|
13 |
+
metrics:
|
14 |
+
- pearson_cosine
|
15 |
+
- spearman_cosine
|
16 |
+
- pearson_manhattan
|
17 |
+
- spearman_manhattan
|
18 |
+
- pearson_euclidean
|
19 |
+
- spearman_euclidean
|
20 |
+
- pearson_dot
|
21 |
+
- spearman_dot
|
22 |
+
- pearson_max
|
23 |
+
- spearman_max
|
24 |
+
widget:
|
25 |
+
- source_sentence: free in spain? Are Spain free Motorways toll-free Spain, renewing
|
26 |
+
old concessions coming
|
27 |
+
sentences:
|
28 |
+
- how to calculate weighted grade percentage in excel? To find the grade, multiply
|
29 |
+
the grade for each assignment against the weight, and then add these totals all
|
30 |
+
up. So for each cell (in the Total column) we will enter =SUM(Grade Cell * Weight
|
31 |
+
Cell), so my first formula is =SUM(B2*C2), the next one would be =SUM(B3*C3) and
|
32 |
+
so on.
|
33 |
+
- In Red Dead Redemption 2's story mode, players have to go to "Story" in the menu
|
34 |
+
and then click the save icon from there. However, in Red Dead Online, there is
|
35 |
+
no such option. On the contrary, players have no way to manually save their game,
|
36 |
+
which is pretty much par for the course in an online multiplayer experience.
|
37 |
+
- are motorways free in spain? Are motorways in Spain free? Motorways are 90% toll-free
|
38 |
+
in Spain. Since 2018, Spain isn't renewing old concessions coming to end.
|
39 |
+
- source_sentence: things do fort wayne?
|
40 |
+
sentences:
|
41 |
+
- what is the difference between a z71 and a 4x4? A Z71 has more undercarriage protection
|
42 |
+
(more skid plates) and heavier duty shock absorbers/struts for off road use than
|
43 |
+
a 4X4. Other than that the two are pretty much the same.
|
44 |
+
- is suboxone bad for kidneys?
|
45 |
+
- indoor things to do in fort wayne indiana?
|
46 |
+
- source_sentence: a should hair?
|
47 |
+
sentences:
|
48 |
+
- how many times in a week should you shampoo your hair?
|
49 |
+
- Sujith fell into the borewell on Friday around 5:45 pm while playing on the family's
|
50 |
+
farm. Initially, he was trapped at a depth of 26 feet but slipped to 88 feet during
|
51 |
+
attempts to pull him up by tying ropes around his hands. Sujith Wilson fell into
|
52 |
+
a borewell in Tamil Nadu's Trichy on Friday.
|
53 |
+
- how to calculate out retained earnings on balance sheet? The retained earnings
|
54 |
+
are calculated by adding net income to (or subtracting net losses from) the previous
|
55 |
+
term's retained earnings and then subtracting any net dividend(s) paid to the
|
56 |
+
shareholders. The figure is calculated at the end of each accounting period (quarterly/annually.)
|
57 |
+
- source_sentence: long period does go
|
58 |
+
sentences:
|
59 |
+
- if someone blocked your email will you know? You could, indeed, be blocked It's
|
60 |
+
certainly possible that your recipient has blocked you. All that means is that
|
61 |
+
email from your email address is automatically discarded at that recipient's end.
|
62 |
+
You will not get a notification; there's simply no way to tell that this has happened.
|
63 |
+
- is drinking apple cider vinegar every day bad for you?
|
64 |
+
- how long after period does weight go down?
|
65 |
+
- source_sentence: beer wine both sugar alcohol excessive be a infections You also
|
66 |
+
sweets, along with foods moldy cheese, if you prone.
|
67 |
+
sentences:
|
68 |
+
- how long does it take to get xfinity internet? Installation generally takes between
|
69 |
+
two to four hours.
|
70 |
+
- They began selling the plush animals to retailers rather than operating a store
|
71 |
+
themselves. Today, Boyds is a publicly traded company that manufactures 18 million-20
|
72 |
+
million bears a year, all at a government-owned facility in China.
|
73 |
+
- Since beer and wine both contain yeast and sugar (alcohol is sugar fermented by
|
74 |
+
yeast), excessive drinking can definitely be a recipe for yeast infections. You
|
75 |
+
should also go easy on sweets, along with foods like moldy cheese, mushrooms,
|
76 |
+
and anything fermented if you're prone to yeast infections. 3.
|
77 |
+
pipeline_tag: sentence-similarity
|
78 |
+
model-index:
|
79 |
+
- name: SentenceTransformer based on FacebookAI/roberta-base
|
80 |
+
results:
|
81 |
+
- task:
|
82 |
+
type: semantic-similarity
|
83 |
+
name: Semantic Similarity
|
84 |
+
dataset:
|
85 |
+
name: sts test
|
86 |
+
type: sts-test
|
87 |
+
metrics:
|
88 |
+
- type: pearson_cosine
|
89 |
+
value: 0.6885553993934473
|
90 |
+
name: Pearson Cosine
|
91 |
+
- type: spearman_cosine
|
92 |
+
value: 0.6912117328249255
|
93 |
+
name: Spearman Cosine
|
94 |
+
- type: pearson_manhattan
|
95 |
+
value: 0.6728262252927975
|
96 |
+
name: Pearson Manhattan
|
97 |
+
- type: spearman_manhattan
|
98 |
+
value: 0.6724759418767672
|
99 |
+
name: Spearman Manhattan
|
100 |
+
- type: pearson_euclidean
|
101 |
+
value: 0.6693578420498989
|
102 |
+
name: Pearson Euclidean
|
103 |
+
- type: spearman_euclidean
|
104 |
+
value: 0.6690698040856067
|
105 |
+
name: Spearman Euclidean
|
106 |
+
- type: pearson_dot
|
107 |
+
value: 0.18975985891617667
|
108 |
+
name: Pearson Dot
|
109 |
+
- type: spearman_dot
|
110 |
+
value: 0.1786146878048478
|
111 |
+
name: Spearman Dot
|
112 |
+
- type: pearson_max
|
113 |
+
value: 0.6885553993934473
|
114 |
+
name: Pearson Max
|
115 |
+
- type: spearman_max
|
116 |
+
value: 0.6912117328249255
|
117 |
+
name: Spearman Max
|
118 |
+
---
|
119 |
+
|
120 |
+
# SentenceTransformer based on FacebookAI/roberta-base
|
121 |
+
|
122 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [FacebookAI/roberta-base](https://huggingface.co/FacebookAI/roberta-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
123 |
+
|
124 |
+
## Model Details
|
125 |
+
|
126 |
+
### Model Description
|
127 |
+
- **Model Type:** Sentence Transformer
|
128 |
+
- **Base model:** [FacebookAI/roberta-base](https://huggingface.co/FacebookAI/roberta-base) <!-- at revision e2da8e2f811d1448a5b465c236feacd80ffbac7b -->
|
129 |
+
- **Maximum Sequence Length:** 512 tokens
|
130 |
+
- **Output Dimensionality:** 768 tokens
|
131 |
+
- **Similarity Function:** Cosine Similarity
|
132 |
+
<!-- - **Training Dataset:** Unknown -->
|
133 |
+
<!-- - **Language:** Unknown -->
|
134 |
+
<!-- - **License:** Unknown -->
|
135 |
+
|
136 |
+
### Model Sources
|
137 |
+
|
138 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
139 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
140 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
141 |
+
|
142 |
+
### Full Model Architecture
|
143 |
+
|
144 |
+
```
|
145 |
+
SentenceTransformer(
|
146 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
|
147 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
148 |
+
)
|
149 |
+
```
|
150 |
+
|
151 |
+
## Usage
|
152 |
+
|
153 |
+
### Direct Usage (Sentence Transformers)
|
154 |
+
|
155 |
+
First install the Sentence Transformers library:
|
156 |
+
|
157 |
+
```bash
|
158 |
+
pip install -U sentence-transformers
|
159 |
+
```
|
160 |
+
|
161 |
+
Then you can load this model and run inference.
|
162 |
+
```python
|
163 |
+
from sentence_transformers import SentenceTransformer
|
164 |
+
|
165 |
+
# Download from the 🤗 Hub
|
166 |
+
model = SentenceTransformer("bobox/RoBERTa-base-unsupervised-TSDAE")
|
167 |
+
# Run inference
|
168 |
+
sentences = [
|
169 |
+
'beer wine both sugar alcohol excessive be a infections You also sweets, along with foods moldy cheese, if you prone.',
|
170 |
+
"Since beer and wine both contain yeast and sugar (alcohol is sugar fermented by yeast), excessive drinking can definitely be a recipe for yeast infections. You should also go easy on sweets, along with foods like moldy cheese, mushrooms, and anything fermented if you're prone to yeast infections. 3.",
|
171 |
+
'They began selling the plush animals to retailers rather than operating a store themselves. Today, Boyds is a publicly traded company that manufactures 18 million-20 million bears a year, all at a government-owned facility in China.',
|
172 |
+
]
|
173 |
+
embeddings = model.encode(sentences)
|
174 |
+
print(embeddings.shape)
|
175 |
+
# [3, 768]
|
176 |
+
|
177 |
+
# Get the similarity scores for the embeddings
|
178 |
+
similarities = model.similarity(embeddings, embeddings)
|
179 |
+
print(similarities.shape)
|
180 |
+
# [3, 3]
|
181 |
+
```
|
182 |
+
|
183 |
+
<!--
|
184 |
+
### Direct Usage (Transformers)
|
185 |
+
|
186 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
187 |
+
|
188 |
+
</details>
|
189 |
+
-->
|
190 |
+
|
191 |
+
<!--
|
192 |
+
### Downstream Usage (Sentence Transformers)
|
193 |
+
|
194 |
+
You can finetune this model on your own dataset.
|
195 |
+
|
196 |
+
<details><summary>Click to expand</summary>
|
197 |
+
|
198 |
+
</details>
|
199 |
+
-->
|
200 |
+
|
201 |
+
<!--
|
202 |
+
### Out-of-Scope Use
|
203 |
+
|
204 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
205 |
+
-->
|
206 |
+
|
207 |
+
## Evaluation
|
208 |
+
|
209 |
+
### Metrics
|
210 |
+
|
211 |
+
#### Semantic Similarity
|
212 |
+
* Dataset: `sts-test`
|
213 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
214 |
+
|
215 |
+
| Metric | Value |
|
216 |
+
|:--------------------|:-----------|
|
217 |
+
| pearson_cosine | 0.6886 |
|
218 |
+
| **spearman_cosine** | **0.6912** |
|
219 |
+
| pearson_manhattan | 0.6728 |
|
220 |
+
| spearman_manhattan | 0.6725 |
|
221 |
+
| pearson_euclidean | 0.6694 |
|
222 |
+
| spearman_euclidean | 0.6691 |
|
223 |
+
| pearson_dot | 0.1898 |
|
224 |
+
| spearman_dot | 0.1786 |
|
225 |
+
| pearson_max | 0.6886 |
|
226 |
+
| spearman_max | 0.6912 |
|
227 |
+
|
228 |
+
<!--
|
229 |
+
## Bias, Risks and Limitations
|
230 |
+
|
231 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
232 |
+
-->
|
233 |
+
|
234 |
+
<!--
|
235 |
+
### Recommendations
|
236 |
+
|
237 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
238 |
+
-->
|
239 |
+
|
240 |
+
## Training Details
|
241 |
+
|
242 |
+
### Training Dataset
|
243 |
+
|
244 |
+
#### Unnamed Dataset
|
245 |
+
|
246 |
+
|
247 |
+
* Size: 300,000 training samples
|
248 |
+
* Columns: <code>sentence_0</code> and <code>sentence_1</code>
|
249 |
+
* Approximate statistics based on the first 1000 samples:
|
250 |
+
| | sentence_0 | sentence_1 |
|
251 |
+
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
|
252 |
+
| type | string | string |
|
253 |
+
| details | <ul><li>min: 3 tokens</li><li>mean: 19.88 tokens</li><li>max: 54 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 46.45 tokens</li><li>max: 157 tokens</li></ul> |
|
254 |
+
* Samples:
|
255 |
+
| sentence_0 | sentence_1 |
|
256 |
+
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
257 |
+
| <code>us have across domestic shorthair, a cat pedigreed one between two breeds Unlike domestic shorthairs which come in of looks, Shorthair kittens the distinct</code> | <code>Most of us have either lived with or come across a domestic shorthair, a cat that closely resembles the pedigreed American Shorthair. The one difference between the two breeds: Unlike domestic shorthairs, which come in a variety of looks, the American Shorthair produces kittens with the same distinct appearance.</code> |
|
258 |
+
| <code>much cost to get plugs normal with plugs, cost start $120 or if precious plugs are $150 to 200+ . 6 8 will price more required</code> | <code>how much does it cost to get your spark plugs changed? On a normal 4-cylinder engine with standard spark plugs, replacement cost can start around $120 up to $150+, or if precious metal spark plugs are required, $150 up to $200+. 6 cylinder and 8 Cylinder engines will increase in price, as more spark plugs are required.</code> |
|
259 |
+
| <code>much my paycheck state income%, your income level not tax rate you is of just that a flat tax rate, those, it has the</code> | <code>how much taxes are taken out of my paycheck pa? Pennsylvania levies a flat state income tax rate of 3.07%. Therefore, your income level and filing status will not affect the income tax rate you pay at the state level. Pennsylvania is one of just eight states that has a flat income tax rate, and of those states, it has the lowest rate.</code> |
|
260 |
+
* Loss: [<code>DenoisingAutoEncoderLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#denoisingautoencoderloss)
|
261 |
+
|
262 |
+
### Training Hyperparameters
|
263 |
+
#### Non-Default Hyperparameters
|
264 |
+
|
265 |
+
- `eval_strategy`: steps
|
266 |
+
- `per_device_train_batch_size`: 12
|
267 |
+
- `per_device_eval_batch_size`: 12
|
268 |
+
- `num_train_epochs`: 1
|
269 |
+
- `multi_dataset_batch_sampler`: round_robin
|
270 |
+
|
271 |
+
#### All Hyperparameters
|
272 |
+
<details><summary>Click to expand</summary>
|
273 |
+
|
274 |
+
- `overwrite_output_dir`: False
|
275 |
+
- `do_predict`: False
|
276 |
+
- `eval_strategy`: steps
|
277 |
+
- `prediction_loss_only`: True
|
278 |
+
- `per_device_train_batch_size`: 12
|
279 |
+
- `per_device_eval_batch_size`: 12
|
280 |
+
- `per_gpu_train_batch_size`: None
|
281 |
+
- `per_gpu_eval_batch_size`: None
|
282 |
+
- `gradient_accumulation_steps`: 1
|
283 |
+
- `eval_accumulation_steps`: None
|
284 |
+
- `learning_rate`: 5e-05
|
285 |
+
- `weight_decay`: 0.0
|
286 |
+
- `adam_beta1`: 0.9
|
287 |
+
- `adam_beta2`: 0.999
|
288 |
+
- `adam_epsilon`: 1e-08
|
289 |
+
- `max_grad_norm`: 1
|
290 |
+
- `num_train_epochs`: 1
|
291 |
+
- `max_steps`: -1
|
292 |
+
- `lr_scheduler_type`: linear
|
293 |
+
- `lr_scheduler_kwargs`: {}
|
294 |
+
- `warmup_ratio`: 0.0
|
295 |
+
- `warmup_steps`: 0
|
296 |
+
- `log_level`: passive
|
297 |
+
- `log_level_replica`: warning
|
298 |
+
- `log_on_each_node`: True
|
299 |
+
- `logging_nan_inf_filter`: True
|
300 |
+
- `save_safetensors`: True
|
301 |
+
- `save_on_each_node`: False
|
302 |
+
- `save_only_model`: False
|
303 |
+
- `restore_callback_states_from_checkpoint`: False
|
304 |
+
- `no_cuda`: False
|
305 |
+
- `use_cpu`: False
|
306 |
+
- `use_mps_device`: False
|
307 |
+
- `seed`: 42
|
308 |
+
- `data_seed`: None
|
309 |
+
- `jit_mode_eval`: False
|
310 |
+
- `use_ipex`: False
|
311 |
+
- `bf16`: False
|
312 |
+
- `fp16`: False
|
313 |
+
- `fp16_opt_level`: O1
|
314 |
+
- `half_precision_backend`: auto
|
315 |
+
- `bf16_full_eval`: False
|
316 |
+
- `fp16_full_eval`: False
|
317 |
+
- `tf32`: None
|
318 |
+
- `local_rank`: 0
|
319 |
+
- `ddp_backend`: None
|
320 |
+
- `tpu_num_cores`: None
|
321 |
+
- `tpu_metrics_debug`: False
|
322 |
+
- `debug`: []
|
323 |
+
- `dataloader_drop_last`: False
|
324 |
+
- `dataloader_num_workers`: 0
|
325 |
+
- `dataloader_prefetch_factor`: None
|
326 |
+
- `past_index`: -1
|
327 |
+
- `disable_tqdm`: False
|
328 |
+
- `remove_unused_columns`: True
|
329 |
+
- `label_names`: None
|
330 |
+
- `load_best_model_at_end`: False
|
331 |
+
- `ignore_data_skip`: False
|
332 |
+
- `fsdp`: []
|
333 |
+
- `fsdp_min_num_params`: 0
|
334 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
335 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
336 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
337 |
+
- `deepspeed`: None
|
338 |
+
- `label_smoothing_factor`: 0.0
|
339 |
+
- `optim`: adamw_torch
|
340 |
+
- `optim_args`: None
|
341 |
+
- `adafactor`: False
|
342 |
+
- `group_by_length`: False
|
343 |
+
- `length_column_name`: length
|
344 |
+
- `ddp_find_unused_parameters`: None
|
345 |
+
- `ddp_bucket_cap_mb`: None
|
346 |
+
- `ddp_broadcast_buffers`: False
|
347 |
+
- `dataloader_pin_memory`: True
|
348 |
+
- `dataloader_persistent_workers`: False
|
349 |
+
- `skip_memory_metrics`: True
|
350 |
+
- `use_legacy_prediction_loop`: False
|
351 |
+
- `push_to_hub`: False
|
352 |
+
- `resume_from_checkpoint`: None
|
353 |
+
- `hub_model_id`: None
|
354 |
+
- `hub_strategy`: every_save
|
355 |
+
- `hub_private_repo`: False
|
356 |
+
- `hub_always_push`: False
|
357 |
+
- `gradient_checkpointing`: False
|
358 |
+
- `gradient_checkpointing_kwargs`: None
|
359 |
+
- `include_inputs_for_metrics`: False
|
360 |
+
- `eval_do_concat_batches`: True
|
361 |
+
- `fp16_backend`: auto
|
362 |
+
- `push_to_hub_model_id`: None
|
363 |
+
- `push_to_hub_organization`: None
|
364 |
+
- `mp_parameters`:
|
365 |
+
- `auto_find_batch_size`: False
|
366 |
+
- `full_determinism`: False
|
367 |
+
- `torchdynamo`: None
|
368 |
+
- `ray_scope`: last
|
369 |
+
- `ddp_timeout`: 1800
|
370 |
+
- `torch_compile`: False
|
371 |
+
- `torch_compile_backend`: None
|
372 |
+
- `torch_compile_mode`: None
|
373 |
+
- `dispatch_batches`: None
|
374 |
+
- `split_batches`: None
|
375 |
+
- `include_tokens_per_second`: False
|
376 |
+
- `include_num_input_tokens_seen`: False
|
377 |
+
- `neftune_noise_alpha`: None
|
378 |
+
- `optim_target_modules`: None
|
379 |
+
- `batch_eval_metrics`: False
|
380 |
+
- `batch_sampler`: batch_sampler
|
381 |
+
- `multi_dataset_batch_sampler`: round_robin
|
382 |
+
|
383 |
+
</details>
|
384 |
+
|
385 |
+
### Training Logs
|
386 |
+
| Epoch | Step | Training Loss | sts-test_spearman_cosine |
|
387 |
+
|:-----:|:-----:|:-------------:|:------------------------:|
|
388 |
+
| 0.02 | 500 | 7.1409 | - |
|
389 |
+
| 0.04 | 1000 | 6.207 | - |
|
390 |
+
| 0.05 | 1250 | - | 0.6399 |
|
391 |
+
| 0.06 | 1500 | 5.8038 | - |
|
392 |
+
| 0.08 | 2000 | 5.4963 | - |
|
393 |
+
| 0.1 | 2500 | 5.2609 | 0.6799 |
|
394 |
+
| 0.12 | 3000 | 5.0997 | - |
|
395 |
+
| 0.14 | 3500 | 5.0004 | - |
|
396 |
+
| 0.15 | 3750 | - | 0.7012 |
|
397 |
+
| 0.16 | 4000 | 4.8694 | - |
|
398 |
+
| 0.18 | 4500 | 4.7805 | - |
|
399 |
+
| 0.2 | 5000 | 4.6776 | 0.7074 |
|
400 |
+
| 0.22 | 5500 | 4.5757 | - |
|
401 |
+
| 0.24 | 6000 | 4.4598 | - |
|
402 |
+
| 0.25 | 6250 | - | 0.7185 |
|
403 |
+
| 0.26 | 6500 | 4.3865 | - |
|
404 |
+
| 0.28 | 7000 | 4.2692 | - |
|
405 |
+
| 0.3 | 7500 | 4.2224 | 0.7205 |
|
406 |
+
| 0.32 | 8000 | 4.1347 | - |
|
407 |
+
| 0.34 | 8500 | 4.0536 | - |
|
408 |
+
| 0.35 | 8750 | - | 0.7239 |
|
409 |
+
| 0.36 | 9000 | 4.0242 | - |
|
410 |
+
| 0.38 | 9500 | 4.0193 | - |
|
411 |
+
| 0.4 | 10000 | 3.9166 | 0.7153 |
|
412 |
+
| 0.42 | 10500 | 3.9004 | - |
|
413 |
+
| 0.44 | 11000 | 3.8372 | - |
|
414 |
+
| 0.45 | 11250 | - | 0.7141 |
|
415 |
+
| 0.46 | 11500 | 3.8037 | - |
|
416 |
+
| 0.48 | 12000 | 3.7788 | - |
|
417 |
+
| 0.5 | 12500 | 3.7191 | 0.7078 |
|
418 |
+
| 0.52 | 13000 | 3.7036 | - |
|
419 |
+
| 0.54 | 13500 | 3.6697 | - |
|
420 |
+
| 0.55 | 13750 | - | 0.7095 |
|
421 |
+
| 0.56 | 14000 | 3.6629 | - |
|
422 |
+
| 0.58 | 14500 | 3.639 | - |
|
423 |
+
| 0.6 | 15000 | 3.6048 | 0.7060 |
|
424 |
+
| 0.62 | 15500 | 3.6072 | - |
|
425 |
+
| 0.64 | 16000 | 3.574 | - |
|
426 |
+
| 0.65 | 16250 | - | 0.7056 |
|
427 |
+
| 0.66 | 16500 | 3.5423 | - |
|
428 |
+
| 0.68 | 17000 | 3.5379 | - |
|
429 |
+
| 0.7 | 17500 | 3.5222 | 0.6969 |
|
430 |
+
| 0.72 | 18000 | 3.5076 | - |
|
431 |
+
| 0.74 | 18500 | 3.5025 | - |
|
432 |
+
| 0.75 | 18750 | - | 0.6959 |
|
433 |
+
| 0.76 | 19000 | 3.4943 | - |
|
434 |
+
| 0.78 | 19500 | 3.475 | - |
|
435 |
+
| 0.8 | 20000 | 3.4874 | 0.6946 |
|
436 |
+
| 0.82 | 20500 | 3.4539 | - |
|
437 |
+
| 0.84 | 21000 | 3.4704 | - |
|
438 |
+
| 0.85 | 21250 | - | 0.6942 |
|
439 |
+
| 0.86 | 21500 | 3.4689 | - |
|
440 |
+
| 0.88 | 22000 | 3.4617 | - |
|
441 |
+
| 0.9 | 22500 | 3.4471 | 0.6917 |
|
442 |
+
| 0.92 | 23000 | 3.4541 | - |
|
443 |
+
| 0.94 | 23500 | 3.4394 | - |
|
444 |
+
| 0.95 | 23750 | - | 0.6915 |
|
445 |
+
| 0.96 | 24000 | 3.4505 | - |
|
446 |
+
| 0.98 | 24500 | 3.4533 | - |
|
447 |
+
| 1.0 | 25000 | 3.4574 | 0.6912 |
|
448 |
+
|
449 |
+
|
450 |
+
### Framework Versions
|
451 |
+
- Python: 3.10.13
|
452 |
+
- Sentence Transformers: 3.0.1
|
453 |
+
- Transformers: 4.41.2
|
454 |
+
- PyTorch: 2.1.2
|
455 |
+
- Accelerate: 0.31.0
|
456 |
+
- Datasets: 2.19.2
|
457 |
+
- Tokenizers: 0.19.1
|
458 |
+
|
459 |
+
## Citation
|
460 |
+
|
461 |
+
### BibTeX
|
462 |
+
|
463 |
+
#### Sentence Transformers
|
464 |
+
```bibtex
|
465 |
+
@inproceedings{reimers-2019-sentence-bert,
|
466 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
467 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
468 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
469 |
+
month = "11",
|
470 |
+
year = "2019",
|
471 |
+
publisher = "Association for Computational Linguistics",
|
472 |
+
url = "https://arxiv.org/abs/1908.10084",
|
473 |
+
}
|
474 |
+
```
|
475 |
+
|
476 |
+
#### DenoisingAutoEncoderLoss
|
477 |
+
```bibtex
|
478 |
+
@inproceedings{wang-2021-TSDAE,
|
479 |
+
title = "TSDAE: Using Transformer-based Sequential Denoising Auto-Encoderfor Unsupervised Sentence Embedding Learning",
|
480 |
+
author = "Wang, Kexin and Reimers, Nils and Gurevych, Iryna",
|
481 |
+
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021",
|
482 |
+
month = nov,
|
483 |
+
year = "2021",
|
484 |
+
address = "Punta Cana, Dominican Republic",
|
485 |
+
publisher = "Association for Computational Linguistics",
|
486 |
+
pages = "671--688",
|
487 |
+
url = "https://arxiv.org/abs/2104.06979",
|
488 |
+
}
|
489 |
+
```
|
490 |
+
|
491 |
+
<!--
|
492 |
+
## Glossary
|
493 |
+
|
494 |
+
*Clearly define terms in order to be accessible across audiences.*
|
495 |
+
-->
|
496 |
+
|
497 |
+
<!--
|
498 |
+
## Model Card Authors
|
499 |
+
|
500 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
501 |
+
-->
|
502 |
+
|
503 |
+
<!--
|
504 |
+
## Model Card Contact
|
505 |
+
|
506 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
507 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "FacebookAI/roberta-base",
|
3 |
+
"architectures": [
|
4 |
+
"RobertaModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 768,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 3072,
|
15 |
+
"layer_norm_eps": 1e-05,
|
16 |
+
"max_position_embeddings": 514,
|
17 |
+
"model_type": "roberta",
|
18 |
+
"num_attention_heads": 12,
|
19 |
+
"num_hidden_layers": 12,
|
20 |
+
"pad_token_id": 1,
|
21 |
+
"position_embedding_type": "absolute",
|
22 |
+
"torch_dtype": "float32",
|
23 |
+
"transformers_version": "4.41.2",
|
24 |
+
"type_vocab_size": 1,
|
25 |
+
"use_cache": true,
|
26 |
+
"vocab_size": 50265
|
27 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.0.1",
|
4 |
+
"transformers": "4.41.2",
|
5 |
+
"pytorch": "2.1.2"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4cf1be8a009ea2949da3a30b4224ef4fbe93adb2a28fe2c7ca0e30f0c78aa145
|
3 |
+
size 498649702
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<s>",
|
3 |
+
"cls_token": "<s>",
|
4 |
+
"eos_token": "</s>",
|
5 |
+
"mask_token": {
|
6 |
+
"content": "<mask>",
|
7 |
+
"lstrip": true,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false
|
11 |
+
},
|
12 |
+
"pad_token": "<pad>",
|
13 |
+
"sep_token": "</s>",
|
14 |
+
"unk_token": "<unk>"
|
15 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"0": {
|
5 |
+
"content": "<s>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": true,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"1": {
|
13 |
+
"content": "<pad>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": true,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"2": {
|
21 |
+
"content": "</s>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": true,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
},
|
28 |
+
"3": {
|
29 |
+
"content": "<unk>",
|
30 |
+
"lstrip": false,
|
31 |
+
"normalized": true,
|
32 |
+
"rstrip": false,
|
33 |
+
"single_word": false,
|
34 |
+
"special": true
|
35 |
+
},
|
36 |
+
"50264": {
|
37 |
+
"content": "<mask>",
|
38 |
+
"lstrip": true,
|
39 |
+
"normalized": false,
|
40 |
+
"rstrip": false,
|
41 |
+
"single_word": false,
|
42 |
+
"special": true
|
43 |
+
}
|
44 |
+
},
|
45 |
+
"bos_token": "<s>",
|
46 |
+
"clean_up_tokenization_spaces": true,
|
47 |
+
"cls_token": "<s>",
|
48 |
+
"eos_token": "</s>",
|
49 |
+
"errors": "replace",
|
50 |
+
"mask_token": "<mask>",
|
51 |
+
"model_max_length": 512,
|
52 |
+
"pad_token": "<pad>",
|
53 |
+
"sep_token": "</s>",
|
54 |
+
"tokenizer_class": "RobertaTokenizer",
|
55 |
+
"trim_offsets": true,
|
56 |
+
"unk_token": "<unk>"
|
57 |
+
}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|