Update README.md
Browse files
README.md
CHANGED
@@ -36,9 +36,7 @@ The input to the model is structred as follows:
|
|
36 |
- **Language(s) (NLP):** English
|
37 |
- **Finetuned from model [optional]:** meta-llama/Llama-2-7b-hf
|
38 |
|
39 |
-
### Model Sources
|
40 |
-
|
41 |
-
<!-- Provide the basic links for the model. -->
|
42 |
|
43 |
- **Repository:** https://github.com/BodaSadalla98/llm-optimized-fintuning
|
44 |
|
@@ -55,11 +53,6 @@ The model is the result of our AI project. If you intend to use it, please, refe
|
|
55 |
|
56 |
For improving stories generation, you can play parameters: temeperature, top_p/top_k, repetition_penalty, etc.
|
57 |
|
58 |
-
## How to Get Started with the Model
|
59 |
-
|
60 |
-
Use the code below to get started with the model.
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
|
64 |
## Training Details
|
65 |
|
@@ -69,20 +62,6 @@ Use the code below to get started with the model.
|
|
69 |
|
70 |
Github for the dataset: https://github.com/kevalnagda/StoryGeneration
|
71 |
|
72 |
-
### Training Procedure
|
73 |
-
|
74 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
75 |
-
|
76 |
-
|
77 |
-
#### Training Hyperparameters
|
78 |
-
|
79 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
80 |
-
|
81 |
-
#### Speeds, Sizes, Times [optional]
|
82 |
-
|
83 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
84 |
-
|
85 |
-
[More Information Needed]
|
86 |
|
87 |
## Evaluation
|
88 |
|
@@ -90,9 +69,6 @@ Github for the dataset: https://github.com/kevalnagda/StoryGeneration
|
|
90 |
|
91 |
### Testing Data, Factors & Metrics
|
92 |
|
93 |
-
#### Testing Data
|
94 |
-
|
95 |
-
<!-- This should link to a Data Card if possible. -->
|
96 |
|
97 |
Test split of the same dataset.
|
98 |
|
@@ -108,29 +84,6 @@ Perplexity: 8.0546
|
|
108 |
|
109 |
BERTScore: 80.11
|
110 |
|
111 |
-
#### Summary
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
## Model Examination [optional]
|
116 |
-
|
117 |
-
<!-- Relevant interpretability work for the model goes here -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
## Environmental Impact
|
122 |
-
|
123 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
124 |
-
|
125 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
126 |
-
|
127 |
-
- **Hardware Type:** [More Information Needed]
|
128 |
-
- **Hours used:** [More Information Needed]
|
129 |
-
- **Cloud Provider:** [More Information Needed]
|
130 |
-
- **Compute Region:** [More Information Needed]
|
131 |
-
- **Carbon Emitted:** [More Information Needed]
|
132 |
-
|
133 |
-
|
134 |
## Training procedure
|
135 |
|
136 |
|
|
|
36 |
- **Language(s) (NLP):** English
|
37 |
- **Finetuned from model [optional]:** meta-llama/Llama-2-7b-hf
|
38 |
|
39 |
+
### Model Sources
|
|
|
|
|
40 |
|
41 |
- **Repository:** https://github.com/BodaSadalla98/llm-optimized-fintuning
|
42 |
|
|
|
53 |
|
54 |
For improving stories generation, you can play parameters: temeperature, top_p/top_k, repetition_penalty, etc.
|
55 |
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
## Training Details
|
58 |
|
|
|
62 |
|
63 |
Github for the dataset: https://github.com/kevalnagda/StoryGeneration
|
64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
## Evaluation
|
67 |
|
|
|
69 |
|
70 |
### Testing Data, Factors & Metrics
|
71 |
|
|
|
|
|
|
|
72 |
|
73 |
Test split of the same dataset.
|
74 |
|
|
|
84 |
|
85 |
BERTScore: 80.11
|
86 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
## Training procedure
|
88 |
|
89 |
|