--- license: apache-2.0 language: - fr pipeline_tag: text-generation library_name: transformers tags: - LLM inference: false ---

Vigogne

# Vigogne-Falcon-7B-Instruct: A French Instruction-following Falcon Model Vigogne-Falcon-7B-Instruct is a [Falcon-7B](https://huggingface.co/tiiuae/falcon-7b) model fine-tuned to follow the French instructions. For more information, please visit the Github repo: https://github.com/bofenghuang/vigogne ## Usage ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig from vigogne.preprocess import generate_instruct_prompt model_name_or_path = "bofenghuang/vigogne-falcon-7b-instruct" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, padding_side="right", use_fast=False) tokenizer.pad_token = tokenizer.eos_token model = AutoModelForCausalLM.from_pretrained( model_name_or_path, torch_dtype=torch.float16, device_map="auto", trust_remote_code=True, ) user_query = "Expliquez la différence entre DoS et phishing." prompt = generate_instruct_prompt(user_query) input_ids = tokenizer(prompt, return_tensors="pt")["input_ids"].to(model.device) input_length = input_ids.shape[1] generated_outputs = model.generate( input_ids=input_ids, generation_config=GenerationConfig( temperature=0.1, do_sample=True, repetition_penalty=1.0, max_new_tokens=512, ), return_dict_in_generate=True, pad_token_id=tokenizer.eos_token_id, eos_token_id=tokenizer.eos_token_id, ) generated_tokens = generated_outputs.sequences[0, input_length:] generated_text = tokenizer.decode(generated_tokens, skip_special_tokens=True) print(generated_text) ``` You can also infer this model by using the following Google Colab Notebook. Open In Colab ## Limitations Vigogne is still under development, and there are many limitations that have to be addressed. Please note that it is possible that the model generates harmful or biased content, incorrect information or generally unhelpful answers.