Librarian Bot: Add base_model information to model
Browse filesThis pull request aims to enrich the metadata of your model by adding [`openai/whisper-medium`](https://huggingface.co/openai/whisper-medium) as a `base_model` field, situated in the `YAML` block of your model's `README.md`.
How did we find this information? We performed a regular expression match on your `README.md` file to determine the connection.
**Why add this?** Enhancing your model's metadata in this way:
- **Boosts Discoverability** - It becomes straightforward to trace the relationships between various models on the Hugging Face Hub.
- **Highlights Impact** - It showcases the contributions and influences different models have within the community.
For a hands-on example of how such metadata can play a pivotal role in mapping model connections, take a look at [librarian-bots/base_model_explorer](https://huggingface.co/spaces/librarian-bots/base_model_explorer).
This PR comes courtesy of [Librarian Bot](https://huggingface.co/librarian-bot). If you have any feedback, queries, or need assistance, please don't hesitate to reach out to [@davanstrien](https://huggingface.co/davanstrien). Your input is invaluable to us!
@@ -1,8 +1,7 @@
|
|
1 |
---
|
2 |
-
license: apache-2.0
|
3 |
language: fr
|
|
|
4 |
library_name: transformers
|
5 |
-
thumbnail: null
|
6 |
tags:
|
7 |
- automatic-speech-recognition
|
8 |
- hf-asr-leaderboard
|
@@ -15,12 +14,13 @@ datasets:
|
|
15 |
- gigant/african_accented_french
|
16 |
metrics:
|
17 |
- wer
|
|
|
18 |
model-index:
|
19 |
- name: Fine-tuned whisper-medium model for ASR in French
|
20 |
results:
|
21 |
- task:
|
22 |
-
name: Automatic Speech Recognition
|
23 |
type: automatic-speech-recognition
|
|
|
24 |
dataset:
|
25 |
name: Common Voice 11.0
|
26 |
type: mozilla-foundation/common_voice_11_0
|
@@ -28,15 +28,15 @@ model-index:
|
|
28 |
split: test
|
29 |
args: fr
|
30 |
metrics:
|
31 |
-
-
|
32 |
-
type: wer
|
33 |
value: 9.03
|
34 |
-
|
35 |
-
|
36 |
value: 8.73
|
|
|
37 |
- task:
|
38 |
-
name: Automatic Speech Recognition
|
39 |
type: automatic-speech-recognition
|
|
|
40 |
dataset:
|
41 |
name: Multilingual LibriSpeech (MLS)
|
42 |
type: facebook/multilingual_librispeech
|
@@ -44,15 +44,15 @@ model-index:
|
|
44 |
split: test
|
45 |
args: french
|
46 |
metrics:
|
47 |
-
-
|
48 |
-
|
49 |
-
|
50 |
-
-
|
51 |
-
type: wer
|
52 |
value: 4.44
|
|
|
53 |
- task:
|
54 |
-
name: Automatic Speech Recognition
|
55 |
type: automatic-speech-recognition
|
|
|
56 |
dataset:
|
57 |
name: VoxPopuli
|
58 |
type: facebook/voxpopuli
|
@@ -60,15 +60,15 @@ model-index:
|
|
60 |
split: test
|
61 |
args: fr
|
62 |
metrics:
|
63 |
-
-
|
64 |
-
type: wer
|
65 |
value: 9.53
|
66 |
-
|
67 |
-
|
68 |
value: 9.46
|
|
|
69 |
- task:
|
70 |
-
name: Automatic Speech Recognition
|
71 |
type: automatic-speech-recognition
|
|
|
72 |
dataset:
|
73 |
name: Fleurs
|
74 |
type: google/fleurs
|
@@ -76,15 +76,15 @@ model-index:
|
|
76 |
split: test
|
77 |
args: fr_fr
|
78 |
metrics:
|
79 |
-
-
|
80 |
-
type: wer
|
81 |
value: 6.33
|
82 |
-
|
83 |
-
|
84 |
value: 5.94
|
|
|
85 |
- task:
|
86 |
-
name: Automatic Speech Recognition
|
87 |
type: automatic-speech-recognition
|
|
|
88 |
dataset:
|
89 |
name: African Accented French
|
90 |
type: gigant/african_accented_french
|
@@ -92,12 +92,12 @@ model-index:
|
|
92 |
split: test
|
93 |
args: fr
|
94 |
metrics:
|
95 |
-
-
|
96 |
-
type: wer
|
97 |
value: 4.89
|
98 |
-
|
99 |
-
|
100 |
value: 4.56
|
|
|
101 |
---
|
102 |
|
103 |
<style>
|
|
|
1 |
---
|
|
|
2 |
language: fr
|
3 |
+
license: apache-2.0
|
4 |
library_name: transformers
|
|
|
5 |
tags:
|
6 |
- automatic-speech-recognition
|
7 |
- hf-asr-leaderboard
|
|
|
14 |
- gigant/african_accented_french
|
15 |
metrics:
|
16 |
- wer
|
17 |
+
base_model: openai/whisper-medium
|
18 |
model-index:
|
19 |
- name: Fine-tuned whisper-medium model for ASR in French
|
20 |
results:
|
21 |
- task:
|
|
|
22 |
type: automatic-speech-recognition
|
23 |
+
name: Automatic Speech Recognition
|
24 |
dataset:
|
25 |
name: Common Voice 11.0
|
26 |
type: mozilla-foundation/common_voice_11_0
|
|
|
28 |
split: test
|
29 |
args: fr
|
30 |
metrics:
|
31 |
+
- type: wer
|
|
|
32 |
value: 9.03
|
33 |
+
name: WER (Greedy)
|
34 |
+
- type: wer
|
35 |
value: 8.73
|
36 |
+
name: WER (Beam 5)
|
37 |
- task:
|
|
|
38 |
type: automatic-speech-recognition
|
39 |
+
name: Automatic Speech Recognition
|
40 |
dataset:
|
41 |
name: Multilingual LibriSpeech (MLS)
|
42 |
type: facebook/multilingual_librispeech
|
|
|
44 |
split: test
|
45 |
args: french
|
46 |
metrics:
|
47 |
+
- type: wer
|
48 |
+
value: 4.6
|
49 |
+
name: WER (Greedy)
|
50 |
+
- type: wer
|
|
|
51 |
value: 4.44
|
52 |
+
name: WER (Beam 5)
|
53 |
- task:
|
|
|
54 |
type: automatic-speech-recognition
|
55 |
+
name: Automatic Speech Recognition
|
56 |
dataset:
|
57 |
name: VoxPopuli
|
58 |
type: facebook/voxpopuli
|
|
|
60 |
split: test
|
61 |
args: fr
|
62 |
metrics:
|
63 |
+
- type: wer
|
|
|
64 |
value: 9.53
|
65 |
+
name: WER (Greedy)
|
66 |
+
- type: wer
|
67 |
value: 9.46
|
68 |
+
name: WER (Beam 5)
|
69 |
- task:
|
|
|
70 |
type: automatic-speech-recognition
|
71 |
+
name: Automatic Speech Recognition
|
72 |
dataset:
|
73 |
name: Fleurs
|
74 |
type: google/fleurs
|
|
|
76 |
split: test
|
77 |
args: fr_fr
|
78 |
metrics:
|
79 |
+
- type: wer
|
|
|
80 |
value: 6.33
|
81 |
+
name: WER (Greedy)
|
82 |
+
- type: wer
|
83 |
value: 5.94
|
84 |
+
name: WER (Beam 5)
|
85 |
- task:
|
|
|
86 |
type: automatic-speech-recognition
|
87 |
+
name: Automatic Speech Recognition
|
88 |
dataset:
|
89 |
name: African Accented French
|
90 |
type: gigant/african_accented_french
|
|
|
92 |
split: test
|
93 |
args: fr
|
94 |
metrics:
|
95 |
+
- type: wer
|
|
|
96 |
value: 4.89
|
97 |
+
name: WER (Greedy)
|
98 |
+
- type: wer
|
99 |
value: 4.56
|
100 |
+
name: WER (Beam 5)
|
101 |
---
|
102 |
|
103 |
<style>
|