Initial commit ant
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1619.17 +/- 162.04
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:da98e4db3e9045e56f159fb0842a6a5d878b6b49dc6e95132ecf62751a529d21
|
3 |
+
size 129260
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f7dc8e3f310>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7dc8e3f3a0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7dc8e3f430>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7dc8e3f4c0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f7dc8e3f550>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f7dc8e3f5e0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f7dc8e3f670>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7dc8e3f700>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f7dc8e3f790>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7dc8e3f820>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7dc8e3f8b0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7dc8e3f940>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f7dc8e389f0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1675956205307047580,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAACJvMj9RA0Y7BQgPP+ONHT+0/8E+zYV4Pg9VUL6iZpC/NSJOPx5rMj3aIYy/01wpPvsVcj/kYqc/rxVkP0/PszxQeKs/WS81PriSD7+4DbW/ogY4v/Vcmz9iKNw/tCoSP7GFg79IPA8/dxkKwKLvaz89cim9GQK+P9/GV79DTpw/zpGJvlES0T/TK4U+HJvuvuIkUT/TE5699pcgPyW/lj5yD6O/SD8UPBmuoT7csh3AshslPEZQj78X20A/2bIOvzeHGz4qYfq+4PtXv1EOMz3qJHk/KMXkvzlH7T6V4oq/J/8XPzWSGL/u+gI/uBUqP+Tj5b8ajyo/Qb1APxziEcCOjy8/xmuSP9COfr9V3IO95jOGvVZSgD/zCAU/hmSsP0xGqj/c9QG97BwEP/6E6z1qj22/GakbPQSK1D9xTsU/sYWDv0g8Dz93GQrAou9rP8wnVD+KbmI/iu8nPWidAUDcj9o+Bx40voWjBb6N0pq/IxUiPw9usb8NCIa/cDhoPyc8Wj+/v1c+4kBPP6ALEj/GxKQ/jeUZv+BiFD9ObTE/sJFpv/GWHT74AsI/8ukWv7GFg79IPA8/dxkKwKLvaz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABZ/lu2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAyldmvAAAAABfOOa/AAAAAFymBL4AAAAADvIAQAAAAABKoqQ9AAAAAG+jAEAAAAAAWy3YPQAAAADBROG/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOoMmNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgBAL7DwAAAAAlNn/vwAAAADyHXk8AAAAAIZI/z8AAAAAmkQIPgAAAABGaOY/AAAAADmkGzwAAAAAKjXrvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAO3K0rUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBMOBu7AAAAAB6D7L8AAAAAkO4NPgAAAAB1Qtk/AAAAALjZqr0AAAAAEOvlPwAAAADhVf49AAAAAIG33L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADZZm2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAmFjcPQAAAABzPOO/AAAAAIp7jT0AAAAAwmnqPwAAAABp1AK9AAAAANld3T8AAAAAbHgAPgAAAACAhe+/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJa6U61b7j2MAWyUTegDjAF0lEdAq71CMrEtNHV9lChoBkdAl5XJYgaFVWgHTegDaAhHQKu/ZIXj2jB1fZQoaAZHQJiZ3dweeWhoB03oA2gIR0CrwPNFKCg9dX2UKGgGR0CY1xxPwd8zaAdN6ANoCEdAq8ImIhyKenV9lChoBkdAljOff4yoGmgHTegDaAhHQKvJan2Iwdt1fZQoaAZHQJL1PC3w1BNoB03oA2gIR0Cry6JsoDxLdX2UKGgGR0CUIHLPldTpaAdN6ANoCEdAq83fjQzDXXV9lChoBkdAlP+TFuNxVGgHTegDaAhHQKvPptKIznB1fZQoaAZHQJa8u2Dxsl9oB03oA2gIR0Cr2RaPS2H+dX2UKGgGR0CV1D/t6X0HaAdN6ANoCEdAq9tBAB1cMXV9lChoBkdAk6v78iwB52gHTegDaAhHQKvcxz+3pfR1fZQoaAZHQIya9cUuctpoB03oA2gIR0Cr3gGHpKSQdX2UKGgGR0CTvbiu+yquaAdN6ANoCEdAq+VHUc4o7XV9lChoBkdAmACZQHiWFGgHTegDaAhHQKvnX8Nx2jh1fZQoaAZHQJdbm2y9mHxoB03oA2gIR0Cr6N8yvcJudX2UKGgGR0CXJxkbgjyGaAdN6ANoCEdAq+pW67NB4XV9lChoBkdAlUaIcebNKWgHTegDaAhHQKv1BKlpGnZ1fZQoaAZHQI6Cvv4M4LloB03oA2gIR0Cr9zT0g8r7dX2UKGgGR0CStoIhhYvGaAdN6ANoCEdAq/i2WD6Fd3V9lChoBkdAk6NNszl90GgHTegDaAhHQKv6Aep4rz51fZQoaAZHQJdfJZ7ojfNoB03oA2gIR0CsAW6BZpztdX2UKGgGR0CRiPzDXOGCaAdN6ANoCEdArAOMdV/+bXV9lChoBkdAlBKPDP4VRGgHTegDaAhHQKwFIOc2BJ91fZQoaAZHQJTm3RqoIfNoB03oA2gIR0CsBk+sHSncdX2UKGgGR0CWVPr30wrUaAdN6ANoCEdArBB4pH7P6nV9lChoBkdAlMQTiXIEKWgHTegDaAhHQKwTKH2ys0Z1fZQoaAZHQHIbbupjtoloB03oA2gIR0CsFMAr6LwXdX2UKGgGR0CSm4FqSHM2aAdN6ANoCEdArBX48fV7QnV9lChoBkdAkovQDifg8GgHTegDaAhHQKwdUP4EfT11fZQoaAZHQJKWmV1Oj7BoB03oA2gIR0CsH3sN+b3HdX2UKGgGR0CQAqqOtGNJaAdN6ANoCEdArCEcm2LHdXV9lChoBkdAdubeenQ6ZGgHTegDaAhHQKwiVdnCfpV1fZQoaAZHQJPznNgSey1oB03oA2gIR0CsK6nGjsUqdX2UKGgGR0B0fBn8KohqaAdN6ANoCEdArC8y8Yht+HV9lChoBkdAffAF6zE74mgHTegDaAhHQKwxGxL0z0p1fZQoaAZHQI8d5npSrHVoB03oA2gIR0CsMk5OafBfdX2UKGgGR0CULcva11GLaAdN6ANoCEdArDmqAnUlRnV9lChoBkdAlXCnt8eCCmgHTegDaAhHQKw7y02tMf11fZQoaAZHQJgrVeJHiFVoB03oA2gIR0CsPVo9LYf5dX2UKGgGR0CQtObbDdgwaAdN6ANoCEdArD6DDQ7cPHV9lChoBkdAlkfsi0OVgWgHTegDaAhHQKxGhlg+hXd1fZQoaAZHQJkOgQcxTKloB03oA2gIR0CsSbVYhdMTdX2UKGgGR0CXNP5KvmozaAdN6ANoCEdArEwUGZ/kNnV9lChoBkdAmemsYht+C2gHTegDaAhHQKxN7/tIClt1fZQoaAZHQJfS9eRgZ0loB03oA2gIR0CsVYazeGfxdX2UKGgGR0CaQpFqi48VaAdN6ANoCEdArFehgNPP9nV9lChoBkdAmFtqsZHd42gHTegDaAhHQKxZLrzoUzt1fZQoaAZHQJlSvaVUuL9oB03oA2gIR0CsWl93B55adX2UKGgGR0CZbkb/ffoBaAdN6ANoCEdArGGWii7Ci3V9lChoBkdAmRSoI8hcJWgHTegDaAhHQKxkORNATqV1fZQoaAZHQJqK1oysS01oB03oA2gIR0CsZn/kWAPNdX2UKGgGR0CcV8dq+JxeaAdN6ANoCEdArGhu0TlDGHV9lChoBkdAngiEpRXOnmgHTegDaAhHQKxxP9MsYl91fZQoaAZHQJy17gNwzchoB03oA2gIR0Csc19xp+MIdX2UKGgGR0CdafB7NSqEaAdN6ANoCEdArHTyP2f03HV9lChoBkdAeuVeKsMiKWgHTegDaAhHQKx2L6tT1kF1fZQoaAZHQJ16QBLf1pVoB03oA2gIR0CsfXJhWo3rdX2UKGgGR0CFopKIznA7aAdN6ANoCEdArH+iiXY153V9lChoBkdAmu3dygf2b2gHTegDaAhHQKyBUUfPomp1fZQoaAZHQJvQltDUmUpoB03oA2gIR0Csgwi04R29dX2UKGgGR0CQdEQLNOdoaAdN6ANoCEdArI02PtD2J3V9lChoBkdAnk4cdo3712gHTegDaAhHQKyPUBClabF1fZQoaAZHQJ67OsuFpPBoB03oA2gIR0CskNeTmnwYdX2UKGgGR0CLGm6reZXuaAdN6ANoCEdArJIfyXlbNnV9lChoBkdAezf1IRRMvmgHTegDaAhHQKyZcTt9hJB1fZQoaAZHQJ0VLtqpLmJoB03oA2gIR0Csm4qKP4mDdX2UKGgGR0CXgbLuQZGbaAdN6ANoCEdArJ0NzwMH8nV9lChoBkdAm4Ah/Aj6e2gHTegDaAhHQKyePO58Sf11fZQoaAZHQJlop1+y7f5oB03oA2gIR0CsqQOryUcGdX2UKGgGR0CZvkRWLgn/aAdN6ANoCEdArKtU5dWyT3V9lChoBkdAir3Gz8gp0GgHTegDaAhHQKys48Tzund1fZQoaAZHQJw7EjcEeQxoB03oA2gIR0CsrhiV8kUsdX2UKGgGR0CcTyl1r6+GaAdN6ANoCEdArLVH1YhdMXV9lChoBkdAmQPwMUh3aGgHTegDaAhHQKy3aldkauR1fZQoaAZHQJ2B8NqgyuZoB03oA2gIR0CsuOr+HaexdX2UKGgGR0CZyi/+KjzqaAdN6ANoCEdArLoh3aBZp3V9lChoBkdAnHNazu4PPWgHTegDaAhHQKzDOxnnMdN1fZQoaAZHQJqerdCVryloB03oA2gIR0CsxoKAz544dX2UKGgGR0CaK9ml67d0aAdN6ANoCEdArMhn0Gu9vnV9lChoBkdAmXu/NiYsumgHTegDaAhHQKzJl0aIeo11fZQoaAZHQJu048p1A7hoB03oA2gIR0Cs0PV45cTrdX2UKGgGR0CeP9jGDL8raAdN6ANoCEdArNMKPhhpg3V9lChoBkdAnG/5eVs1sWgHTegDaAhHQKzUldGiHqN1fZQoaAZHQJ0RRda+vhZoB03oA2gIR0Cs1cxrzoU0dX2UKGgGR0CBV05nUUfxaAdN6ANoCEdArN4IY1pCbHV9lChoBkdAnpDDvqkdm2gHTegDaAhHQKzhPjVhCt11fZQoaAZHQIpQ1P1tfoloB03oA2gIR0Cs48WwV0tAdX2UKGgGR0CdVhLgn+hoaAdN6ANoCEdArOWvZh8YynV9lChoBkdAmmwWTcIqsmgHTegDaAhHQKztLJwKjSJ1fZQoaAZHQH9zRzJZGKBoB03oA2gIR0Cs72NCAtnPdX2UKGgGR0CaZ8T0QK8daAdN6ANoCEdArPD2HaewtHV9lChoBkdAmez0csDnvGgHTegDaAhHQKzyJVENOM51fZQoaAZHQI3i6Rp1zQxoB03oA2gIR0Cs+YpUPxx2dX2UKGgGR0CXG+HSWqtHaAdN6ANoCEdArPxz8pCrtHV9lChoBkdAnAxOUY8+zWgHTegDaAhHQKz+wEPDpC91fZQoaAZHQITCkg+yJKtoB03oA2gIR0CtAJW7nPmgdX2UKGgGR0CM/TGOuJUHaAdN6ANoCEdArQkkcKgIyHV9lChoBkdAjQKiIDYAbWgHTegDaAhHQK0LUEOAiFF1fZQoaAZHQJEKdpItlI5oB03oA2gIR0CtDNN7a7EpdX2UKGgGR0CVzoUHpr1vaAdN6ANoCEdArQ4DjYI0InVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ece14974c043e84bb58a6591635a1c1fa245bc132f16b1e86febd728482b0a45
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f90616ec044588dea0e836e4aaf360b77682be9645c01aff7aeebe20a99a53dc
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7dc8e3f310>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7dc8e3f3a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7dc8e3f430>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7dc8e3f4c0>", "_build": "<function ActorCriticPolicy._build at 0x7f7dc8e3f550>", "forward": "<function ActorCriticPolicy.forward at 0x7f7dc8e3f5e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f7dc8e3f670>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7dc8e3f700>", "_predict": "<function ActorCriticPolicy._predict at 0x7f7dc8e3f790>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7dc8e3f820>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7dc8e3f8b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7dc8e3f940>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f7dc8e389f0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675956205307047580, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAACJvMj9RA0Y7BQgPP+ONHT+0/8E+zYV4Pg9VUL6iZpC/NSJOPx5rMj3aIYy/01wpPvsVcj/kYqc/rxVkP0/PszxQeKs/WS81PriSD7+4DbW/ogY4v/Vcmz9iKNw/tCoSP7GFg79IPA8/dxkKwKLvaz89cim9GQK+P9/GV79DTpw/zpGJvlES0T/TK4U+HJvuvuIkUT/TE5699pcgPyW/lj5yD6O/SD8UPBmuoT7csh3AshslPEZQj78X20A/2bIOvzeHGz4qYfq+4PtXv1EOMz3qJHk/KMXkvzlH7T6V4oq/J/8XPzWSGL/u+gI/uBUqP+Tj5b8ajyo/Qb1APxziEcCOjy8/xmuSP9COfr9V3IO95jOGvVZSgD/zCAU/hmSsP0xGqj/c9QG97BwEP/6E6z1qj22/GakbPQSK1D9xTsU/sYWDv0g8Dz93GQrAou9rP8wnVD+KbmI/iu8nPWidAUDcj9o+Bx40voWjBb6N0pq/IxUiPw9usb8NCIa/cDhoPyc8Wj+/v1c+4kBPP6ALEj/GxKQ/jeUZv+BiFD9ObTE/sJFpv/GWHT74AsI/8ukWv7GFg79IPA8/dxkKwKLvaz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABZ/lu2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAyldmvAAAAABfOOa/AAAAAFymBL4AAAAADvIAQAAAAABKoqQ9AAAAAG+jAEAAAAAAWy3YPQAAAADBROG/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOoMmNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgBAL7DwAAAAAlNn/vwAAAADyHXk8AAAAAIZI/z8AAAAAmkQIPgAAAABGaOY/AAAAADmkGzwAAAAAKjXrvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAO3K0rUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBMOBu7AAAAAB6D7L8AAAAAkO4NPgAAAAB1Qtk/AAAAALjZqr0AAAAAEOvlPwAAAADhVf49AAAAAIG33L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADZZm2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAmFjcPQAAAABzPOO/AAAAAIp7jT0AAAAAwmnqPwAAAABp1AK9AAAAANld3T8AAAAAbHgAPgAAAACAhe+/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJa6U61b7j2MAWyUTegDjAF0lEdAq71CMrEtNHV9lChoBkdAl5XJYgaFVWgHTegDaAhHQKu/ZIXj2jB1fZQoaAZHQJiZ3dweeWhoB03oA2gIR0CrwPNFKCg9dX2UKGgGR0CY1xxPwd8zaAdN6ANoCEdAq8ImIhyKenV9lChoBkdAljOff4yoGmgHTegDaAhHQKvJan2Iwdt1fZQoaAZHQJL1PC3w1BNoB03oA2gIR0Cry6JsoDxLdX2UKGgGR0CUIHLPldTpaAdN6ANoCEdAq83fjQzDXXV9lChoBkdAlP+TFuNxVGgHTegDaAhHQKvPptKIznB1fZQoaAZHQJa8u2Dxsl9oB03oA2gIR0Cr2RaPS2H+dX2UKGgGR0CV1D/t6X0HaAdN6ANoCEdAq9tBAB1cMXV9lChoBkdAk6v78iwB52gHTegDaAhHQKvcxz+3pfR1fZQoaAZHQIya9cUuctpoB03oA2gIR0Cr3gGHpKSQdX2UKGgGR0CTvbiu+yquaAdN6ANoCEdAq+VHUc4o7XV9lChoBkdAmACZQHiWFGgHTegDaAhHQKvnX8Nx2jh1fZQoaAZHQJdbm2y9mHxoB03oA2gIR0Cr6N8yvcJudX2UKGgGR0CXJxkbgjyGaAdN6ANoCEdAq+pW67NB4XV9lChoBkdAlUaIcebNKWgHTegDaAhHQKv1BKlpGnZ1fZQoaAZHQI6Cvv4M4LloB03oA2gIR0Cr9zT0g8r7dX2UKGgGR0CStoIhhYvGaAdN6ANoCEdAq/i2WD6Fd3V9lChoBkdAk6NNszl90GgHTegDaAhHQKv6Aep4rz51fZQoaAZHQJdfJZ7ojfNoB03oA2gIR0CsAW6BZpztdX2UKGgGR0CRiPzDXOGCaAdN6ANoCEdArAOMdV/+bXV9lChoBkdAlBKPDP4VRGgHTegDaAhHQKwFIOc2BJ91fZQoaAZHQJTm3RqoIfNoB03oA2gIR0CsBk+sHSncdX2UKGgGR0CWVPr30wrUaAdN6ANoCEdArBB4pH7P6nV9lChoBkdAlMQTiXIEKWgHTegDaAhHQKwTKH2ys0Z1fZQoaAZHQHIbbupjtoloB03oA2gIR0CsFMAr6LwXdX2UKGgGR0CSm4FqSHM2aAdN6ANoCEdArBX48fV7QnV9lChoBkdAkovQDifg8GgHTegDaAhHQKwdUP4EfT11fZQoaAZHQJKWmV1Oj7BoB03oA2gIR0CsH3sN+b3HdX2UKGgGR0CQAqqOtGNJaAdN6ANoCEdArCEcm2LHdXV9lChoBkdAdubeenQ6ZGgHTegDaAhHQKwiVdnCfpV1fZQoaAZHQJPznNgSey1oB03oA2gIR0CsK6nGjsUqdX2UKGgGR0B0fBn8KohqaAdN6ANoCEdArC8y8Yht+HV9lChoBkdAffAF6zE74mgHTegDaAhHQKwxGxL0z0p1fZQoaAZHQI8d5npSrHVoB03oA2gIR0CsMk5OafBfdX2UKGgGR0CULcva11GLaAdN6ANoCEdArDmqAnUlRnV9lChoBkdAlXCnt8eCCmgHTegDaAhHQKw7y02tMf11fZQoaAZHQJgrVeJHiFVoB03oA2gIR0CsPVo9LYf5dX2UKGgGR0CQtObbDdgwaAdN6ANoCEdArD6DDQ7cPHV9lChoBkdAlkfsi0OVgWgHTegDaAhHQKxGhlg+hXd1fZQoaAZHQJkOgQcxTKloB03oA2gIR0CsSbVYhdMTdX2UKGgGR0CXNP5KvmozaAdN6ANoCEdArEwUGZ/kNnV9lChoBkdAmemsYht+C2gHTegDaAhHQKxN7/tIClt1fZQoaAZHQJfS9eRgZ0loB03oA2gIR0CsVYazeGfxdX2UKGgGR0CaQpFqi48VaAdN6ANoCEdArFehgNPP9nV9lChoBkdAmFtqsZHd42gHTegDaAhHQKxZLrzoUzt1fZQoaAZHQJlSvaVUuL9oB03oA2gIR0CsWl93B55adX2UKGgGR0CZbkb/ffoBaAdN6ANoCEdArGGWii7Ci3V9lChoBkdAmRSoI8hcJWgHTegDaAhHQKxkORNATqV1fZQoaAZHQJqK1oysS01oB03oA2gIR0CsZn/kWAPNdX2UKGgGR0CcV8dq+JxeaAdN6ANoCEdArGhu0TlDGHV9lChoBkdAngiEpRXOnmgHTegDaAhHQKxxP9MsYl91fZQoaAZHQJy17gNwzchoB03oA2gIR0Csc19xp+MIdX2UKGgGR0CdafB7NSqEaAdN6ANoCEdArHTyP2f03HV9lChoBkdAeuVeKsMiKWgHTegDaAhHQKx2L6tT1kF1fZQoaAZHQJ16QBLf1pVoB03oA2gIR0CsfXJhWo3rdX2UKGgGR0CFopKIznA7aAdN6ANoCEdArH+iiXY153V9lChoBkdAmu3dygf2b2gHTegDaAhHQKyBUUfPomp1fZQoaAZHQJvQltDUmUpoB03oA2gIR0Csgwi04R29dX2UKGgGR0CQdEQLNOdoaAdN6ANoCEdArI02PtD2J3V9lChoBkdAnk4cdo3712gHTegDaAhHQKyPUBClabF1fZQoaAZHQJ67OsuFpPBoB03oA2gIR0CskNeTmnwYdX2UKGgGR0CLGm6reZXuaAdN6ANoCEdArJIfyXlbNnV9lChoBkdAezf1IRRMvmgHTegDaAhHQKyZcTt9hJB1fZQoaAZHQJ0VLtqpLmJoB03oA2gIR0Csm4qKP4mDdX2UKGgGR0CXgbLuQZGbaAdN6ANoCEdArJ0NzwMH8nV9lChoBkdAm4Ah/Aj6e2gHTegDaAhHQKyePO58Sf11fZQoaAZHQJlop1+y7f5oB03oA2gIR0CsqQOryUcGdX2UKGgGR0CZvkRWLgn/aAdN6ANoCEdArKtU5dWyT3V9lChoBkdAir3Gz8gp0GgHTegDaAhHQKys48Tzund1fZQoaAZHQJw7EjcEeQxoB03oA2gIR0CsrhiV8kUsdX2UKGgGR0CcTyl1r6+GaAdN6ANoCEdArLVH1YhdMXV9lChoBkdAmQPwMUh3aGgHTegDaAhHQKy3aldkauR1fZQoaAZHQJ2B8NqgyuZoB03oA2gIR0CsuOr+HaexdX2UKGgGR0CZyi/+KjzqaAdN6ANoCEdArLoh3aBZp3V9lChoBkdAnHNazu4PPWgHTegDaAhHQKzDOxnnMdN1fZQoaAZHQJqerdCVryloB03oA2gIR0CsxoKAz544dX2UKGgGR0CaK9ml67d0aAdN6ANoCEdArMhn0Gu9vnV9lChoBkdAmXu/NiYsumgHTegDaAhHQKzJl0aIeo11fZQoaAZHQJu048p1A7hoB03oA2gIR0Cs0PV45cTrdX2UKGgGR0CeP9jGDL8raAdN6ANoCEdArNMKPhhpg3V9lChoBkdAnG/5eVs1sWgHTegDaAhHQKzUldGiHqN1fZQoaAZHQJ0RRda+vhZoB03oA2gIR0Cs1cxrzoU0dX2UKGgGR0CBV05nUUfxaAdN6ANoCEdArN4IY1pCbHV9lChoBkdAnpDDvqkdm2gHTegDaAhHQKzhPjVhCt11fZQoaAZHQIpQ1P1tfoloB03oA2gIR0Cs48WwV0tAdX2UKGgGR0CdVhLgn+hoaAdN6ANoCEdArOWvZh8YynV9lChoBkdAmmwWTcIqsmgHTegDaAhHQKztLJwKjSJ1fZQoaAZHQH9zRzJZGKBoB03oA2gIR0Cs72NCAtnPdX2UKGgGR0CaZ8T0QK8daAdN6ANoCEdArPD2HaewtHV9lChoBkdAmez0csDnvGgHTegDaAhHQKzyJVENOM51fZQoaAZHQI3i6Rp1zQxoB03oA2gIR0Cs+YpUPxx2dX2UKGgGR0CXG+HSWqtHaAdN6ANoCEdArPxz8pCrtHV9lChoBkdAnAxOUY8+zWgHTegDaAhHQKz+wEPDpC91fZQoaAZHQITCkg+yJKtoB03oA2gIR0CtAJW7nPmgdX2UKGgGR0CM/TGOuJUHaAdN6ANoCEdArQkkcKgIyHV9lChoBkdAjQKiIDYAbWgHTegDaAhHQK0LUEOAiFF1fZQoaAZHQJEKdpItlI5oB03oA2gIR0CtDNN7a7EpdX2UKGgGR0CVzoUHpr1vaAdN6ANoCEdArQ4DjYI0InVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:96e535168882c4ea83529cc68062c45d9bd01683790fff7644a1d161a88e50ca
|
3 |
+
size 1134948
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1619.1652692116331, "std_reward": 162.0435486035779, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-09T16:25:30.252934"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3ef9ce1c134d4fee1232137bd27d61332ad5dbc956dcbe1e604e490643dd85b7
|
3 |
+
size 2136
|