--- license: apache-2.0 tags: - image-classification - vision - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: moon-detector-v5 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9949622166246851 --- # moon-detector-v5 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0238 - Accuracy: 0.9950 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 1337 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0548 | 1.0 | 281 | 0.0616 | 0.9798 | | 0.1366 | 2.0 | 562 | 0.0340 | 0.9899 | | 0.0218 | 3.0 | 843 | 0.0430 | 0.9874 | | 0.0403 | 4.0 | 1124 | 0.0406 | 0.9874 | | 0.0184 | 5.0 | 1405 | 0.0238 | 0.9950 | ### Framework versions - Transformers 4.30.0.dev0 - Pytorch 2.0.1+cpu - Datasets 2.12.0 - Tokenizers 0.13.3