Upload LukeQuestionAnswering.py
Browse files- LukeQuestionAnswering.py +340 -0
LukeQuestionAnswering.py
ADDED
@@ -0,0 +1,340 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import LukePreTrainedModel, LukeModel, AutoTokenizer, TrainingArguments, default_data_collator, Trainer, LukeForQuestionAnswering
|
2 |
+
from transformers.modeling_outputs import ModelOutput
|
3 |
+
from typing import Optional, Tuple, Union
|
4 |
+
|
5 |
+
import torch
|
6 |
+
from dataclasses import dataclass
|
7 |
+
from datasets import load_dataset
|
8 |
+
from torch import nn
|
9 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
10 |
+
|
11 |
+
PEFT = True
|
12 |
+
repo_name = "LUKE_squad_finetuned_qa"
|
13 |
+
|
14 |
+
# https://github.com/huggingface/transformers/blob/v4.34.1/src/transformers/models/luke/modeling_luke.py#L319-L353
|
15 |
+
# Taken from HF repository, easier to include additional features -- Currently identical to LukeForQuestionAnswering by HF
|
16 |
+
|
17 |
+
@dataclass
|
18 |
+
class LukeQuestionAnsweringModelOutput(ModelOutput):
|
19 |
+
"""
|
20 |
+
Outputs of question answering models.
|
21 |
+
|
22 |
+
|
23 |
+
Args:
|
24 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
25 |
+
Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.
|
26 |
+
start_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
|
27 |
+
Span-start scores (before SoftMax).
|
28 |
+
end_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
|
29 |
+
Span-end scores (before SoftMax).
|
30 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
31 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
32 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
33 |
+
|
34 |
+
|
35 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
36 |
+
entity_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
37 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
|
38 |
+
shape `(batch_size, entity_length, hidden_size)`. Entity hidden-states of the model at the output of each
|
39 |
+
layer plus the initial entity embedding outputs.
|
40 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
41 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
42 |
+
sequence_length)`.
|
43 |
+
|
44 |
+
|
45 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
46 |
+
heads.
|
47 |
+
"""
|
48 |
+
|
49 |
+
|
50 |
+
loss: Optional[torch.FloatTensor] = None
|
51 |
+
start_logits: torch.FloatTensor = None
|
52 |
+
end_logits: torch.FloatTensor = None
|
53 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
54 |
+
entity_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
55 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
56 |
+
|
57 |
+
class AugmentedLukeForQuestionAnswering(LukePreTrainedModel):
|
58 |
+
def __init__(self, config):
|
59 |
+
super().__init__(config)
|
60 |
+
|
61 |
+
# This is 2.
|
62 |
+
self.num_labels = config.num_labels
|
63 |
+
|
64 |
+
self.luke = LukeModel(config, add_pooling_layer=False)
|
65 |
+
|
66 |
+
'''
|
67 |
+
Any improvement to the model are expected here. Additional features, anything...
|
68 |
+
'''
|
69 |
+
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
|
70 |
+
|
71 |
+
|
72 |
+
# Initialize weights and apply final processing
|
73 |
+
self.post_init()
|
74 |
+
|
75 |
+
def forward(
|
76 |
+
self,
|
77 |
+
input_ids: Optional[torch.LongTensor] = None,
|
78 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
79 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
80 |
+
position_ids: Optional[torch.FloatTensor] = None,
|
81 |
+
entity_ids: Optional[torch.LongTensor] = None,
|
82 |
+
entity_attention_mask: Optional[torch.FloatTensor] = None,
|
83 |
+
entity_token_type_ids: Optional[torch.LongTensor] = None,
|
84 |
+
entity_position_ids: Optional[torch.LongTensor] = None,
|
85 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
86 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
87 |
+
start_positions: Optional[torch.LongTensor] = None,
|
88 |
+
end_positions: Optional[torch.LongTensor] = None,
|
89 |
+
output_attentions: Optional[bool] = None,
|
90 |
+
output_hidden_states: Optional[bool] = None,
|
91 |
+
return_dict: Optional[bool] = None,
|
92 |
+
) -> Union[Tuple, LukeQuestionAnsweringModelOutput]:
|
93 |
+
|
94 |
+
r"""
|
95 |
+
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
96 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
97 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
98 |
+
are not taken into account for computing the loss.
|
99 |
+
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
100 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
101 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
102 |
+
are not taken into account for computing the loss.
|
103 |
+
"""
|
104 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
105 |
+
|
106 |
+
|
107 |
+
outputs = self.luke(
|
108 |
+
input_ids=input_ids,
|
109 |
+
attention_mask=attention_mask,
|
110 |
+
token_type_ids=token_type_ids,
|
111 |
+
position_ids=position_ids,
|
112 |
+
entity_ids=entity_ids,
|
113 |
+
entity_attention_mask=entity_attention_mask,
|
114 |
+
entity_token_type_ids=entity_token_type_ids,
|
115 |
+
entity_position_ids=entity_position_ids,
|
116 |
+
head_mask=head_mask,
|
117 |
+
inputs_embeds=inputs_embeds,
|
118 |
+
output_attentions=output_attentions,
|
119 |
+
output_hidden_states=output_hidden_states,
|
120 |
+
return_dict=True,
|
121 |
+
)
|
122 |
+
|
123 |
+
|
124 |
+
sequence_output = outputs.last_hidden_state
|
125 |
+
|
126 |
+
|
127 |
+
logits = self.qa_outputs(sequence_output)
|
128 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
129 |
+
start_logits = start_logits.squeeze(-1)
|
130 |
+
end_logits = end_logits.squeeze(-1)
|
131 |
+
|
132 |
+
|
133 |
+
total_loss = None
|
134 |
+
if start_positions is not None and end_positions is not None:
|
135 |
+
# If we are on multi-GPU, split add a dimension
|
136 |
+
if len(start_positions.size()) > 1:
|
137 |
+
start_positions = start_positions.squeeze(-1)
|
138 |
+
if len(end_positions.size()) > 1:
|
139 |
+
end_positions = end_positions.squeeze(-1)
|
140 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
141 |
+
ignored_index = start_logits.size(1)
|
142 |
+
start_positions.clamp_(0, ignored_index)
|
143 |
+
end_positions.clamp_(0, ignored_index)
|
144 |
+
|
145 |
+
|
146 |
+
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
147 |
+
start_loss = loss_fct(start_logits, start_positions)
|
148 |
+
end_loss = loss_fct(end_logits, end_positions)
|
149 |
+
total_loss = (start_loss + end_loss) / 2
|
150 |
+
|
151 |
+
|
152 |
+
if not return_dict:
|
153 |
+
return tuple(
|
154 |
+
v
|
155 |
+
for v in [
|
156 |
+
total_loss,
|
157 |
+
start_logits,
|
158 |
+
end_logits,
|
159 |
+
outputs.hidden_states,
|
160 |
+
outputs.entity_hidden_states,
|
161 |
+
outputs.attentions,
|
162 |
+
]
|
163 |
+
if v is not None
|
164 |
+
)
|
165 |
+
|
166 |
+
|
167 |
+
return LukeQuestionAnsweringModelOutput(
|
168 |
+
loss=total_loss,
|
169 |
+
start_logits=start_logits,
|
170 |
+
end_logits=end_logits,
|
171 |
+
hidden_states=outputs.hidden_states,
|
172 |
+
entity_hidden_states=outputs.entity_hidden_states,
|
173 |
+
attentions=outputs.attentions,
|
174 |
+
)
|
175 |
+
|
176 |
+
if __name__ == "__main__":
|
177 |
+
base_luke = "studio-ousia/luke-base"
|
178 |
+
|
179 |
+
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
180 |
+
|
181 |
+
# Luke does not have a FastTokenizer
|
182 |
+
# Work-around for FastTokenizer - RoBERTa and LUKE share the same subword vocab, and we are not using entities functions of LUKE-tokenizer anyways
|
183 |
+
tokenizer = AutoTokenizer.from_pretrained("roberta-base")
|
184 |
+
|
185 |
+
# tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
|
186 |
+
model = AugmentedLukeForQuestionAnswering.from_pretrained(base_luke).to(device)
|
187 |
+
|
188 |
+
raw_datasets = load_dataset("squad")
|
189 |
+
|
190 |
+
# not exactly hyperparameters
|
191 |
+
max_length = 384
|
192 |
+
stride = 128
|
193 |
+
batch_size = 3
|
194 |
+
|
195 |
+
def preprocess_training_examples(examples):
|
196 |
+
|
197 |
+
questions = [q.strip() for q in examples["question"]]
|
198 |
+
inputs = tokenizer(
|
199 |
+
questions,
|
200 |
+
examples["context"],
|
201 |
+
max_length=max_length,
|
202 |
+
truncation="only_second",
|
203 |
+
stride=stride,
|
204 |
+
return_overflowing_tokens=True,
|
205 |
+
return_offsets_mapping=True,
|
206 |
+
padding="max_length",
|
207 |
+
)
|
208 |
+
|
209 |
+
offset_mapping = inputs.pop("offset_mapping")
|
210 |
+
sample_map = inputs.pop("overflow_to_sample_mapping")
|
211 |
+
answers = examples["answers"]
|
212 |
+
start_positions = []
|
213 |
+
end_positions = []
|
214 |
+
|
215 |
+
for i, offset in enumerate(offset_mapping):
|
216 |
+
sample_idx = sample_map[i]
|
217 |
+
answer = answers[sample_idx]
|
218 |
+
start_char = answer["answer_start"][0]
|
219 |
+
end_char = answer["answer_start"][0] + len(answer["text"][0])
|
220 |
+
sequence_ids = inputs.sequence_ids(i)
|
221 |
+
|
222 |
+
# Find the start and end of the context
|
223 |
+
idx = 0
|
224 |
+
while sequence_ids[idx] != 1:
|
225 |
+
idx += 1
|
226 |
+
context_start = idx
|
227 |
+
while sequence_ids[idx] == 1:
|
228 |
+
idx += 1
|
229 |
+
context_end = idx - 1
|
230 |
+
|
231 |
+
# If the answer is not fully inside the context, label is (0, 0)
|
232 |
+
if offset[context_start][0] > start_char or offset[context_end][1] < end_char:
|
233 |
+
start_positions.append(0)
|
234 |
+
end_positions.append(0)
|
235 |
+
else:
|
236 |
+
# Otherwise it's the start and end token positions
|
237 |
+
idx = context_start
|
238 |
+
while idx <= context_end and offset[idx][0] <= start_char:
|
239 |
+
idx += 1
|
240 |
+
start_positions.append(idx - 1)
|
241 |
+
|
242 |
+
idx = context_end
|
243 |
+
while idx >= context_start and offset[idx][1] >= end_char:
|
244 |
+
idx -= 1
|
245 |
+
end_positions.append(idx + 1)
|
246 |
+
|
247 |
+
inputs["start_positions"] = start_positions
|
248 |
+
inputs["end_positions"] = end_positions
|
249 |
+
return inputs
|
250 |
+
|
251 |
+
train_dataset = raw_datasets["train"].map(
|
252 |
+
preprocess_training_examples,
|
253 |
+
batched=True,
|
254 |
+
remove_columns=raw_datasets["train"].column_names,
|
255 |
+
)
|
256 |
+
|
257 |
+
def preprocess_validation_examples(examples):
|
258 |
+
questions = [q.strip() for q in examples["question"]]
|
259 |
+
inputs = tokenizer(
|
260 |
+
questions,
|
261 |
+
examples["context"],
|
262 |
+
max_length=max_length,
|
263 |
+
truncation="only_second",
|
264 |
+
stride=stride,
|
265 |
+
return_overflowing_tokens=True,
|
266 |
+
return_offsets_mapping=True,
|
267 |
+
padding="max_length",
|
268 |
+
)
|
269 |
+
|
270 |
+
|
271 |
+
sample_map = inputs.pop("overflow_to_sample_mapping")
|
272 |
+
example_ids = []
|
273 |
+
|
274 |
+
for i in range(len(inputs["input_ids"])):
|
275 |
+
sample_idx = sample_map[i]
|
276 |
+
example_ids.append(examples["id"][sample_idx])
|
277 |
+
|
278 |
+
sequence_ids = inputs.sequence_ids(i)
|
279 |
+
offset = inputs["offset_mapping"][i]
|
280 |
+
inputs["offset_mapping"][i] = [
|
281 |
+
o if sequence_ids[k] == 1 else None for k, o in enumerate(offset)
|
282 |
+
]
|
283 |
+
|
284 |
+
inputs["example_id"] = example_ids
|
285 |
+
return inputs
|
286 |
+
|
287 |
+
validation_dataset = raw_datasets["validation"].map(
|
288 |
+
preprocess_validation_examples,
|
289 |
+
batched=True,
|
290 |
+
remove_columns=raw_datasets["validation"].column_names,
|
291 |
+
)
|
292 |
+
|
293 |
+
# --------------- PEFT -------------------- # One epoch without PEFT took about 2h on my computer with CUDA - performance of PEFT kinda ass though
|
294 |
+
if PEFT:
|
295 |
+
from peft import get_peft_config, get_peft_model, LoraConfig, TaskType
|
296 |
+
|
297 |
+
# ---- For all linear layers ----
|
298 |
+
import re
|
299 |
+
pattern = r'\((\w+)\): Linear'
|
300 |
+
linear_layers = re.findall(pattern, str(model.modules))
|
301 |
+
target_modules = list(set(linear_layers))
|
302 |
+
|
303 |
+
# If using peft, can consider increaisng r for better performance
|
304 |
+
peft_config = LoraConfig(
|
305 |
+
task_type=TaskType.QUESTION_ANS, inference_mode=False, r=8, lora_alpha=32, lora_dropout=0.1, target_modules=target_modules, bias='all'
|
306 |
+
)
|
307 |
+
|
308 |
+
model = get_peft_model(model, peft_config)
|
309 |
+
model.print_trainable_parameters()
|
310 |
+
|
311 |
+
repo_name += "_PEFT"
|
312 |
+
|
313 |
+
# ------------------------------------------ #
|
314 |
+
|
315 |
+
args = TrainingArguments(
|
316 |
+
repo_name,
|
317 |
+
evaluation_strategy = "no",
|
318 |
+
save_strategy="epoch",
|
319 |
+
learning_rate=2e-5,
|
320 |
+
per_device_train_batch_size=batch_size,
|
321 |
+
per_device_eval_batch_size=batch_size,
|
322 |
+
num_train_epochs=3,
|
323 |
+
weight_decay=0.01,
|
324 |
+
push_to_hub=True,
|
325 |
+
)
|
326 |
+
|
327 |
+
trainer = Trainer(
|
328 |
+
model,
|
329 |
+
args,
|
330 |
+
train_dataset=train_dataset,
|
331 |
+
eval_dataset=validation_dataset,
|
332 |
+
data_collator=default_data_collator,
|
333 |
+
tokenizer=tokenizer
|
334 |
+
)
|
335 |
+
|
336 |
+
trainer.train()
|
337 |
+
|
338 |
+
|
339 |
+
# Not complete yet, still have post-processing, using HFHub to get results now
|
340 |
+
# https://huggingface.co/learn/nlp-course/chapter7/7?fw=pt
|