File size: 1,940 Bytes
d902713
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
license: mit
base_model: cointegrated/rut5-base-multitask
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: flux-mt5-base-multitask-model
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# flux-mt5-base-multitask-model

This model is a fine-tuned version of [cointegrated/rut5-base-multitask](https://huggingface.co/cointegrated/rut5-base-multitask) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: nan
- Rouge1: 0.0399
- Rouge2: 0.0123
- Rougel: 0.0358
- Rougelsum: 0.0358
- Gen Len: 11.5531

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| 0.0           | 1.0   | 10877 | nan             | 0.0399 | 0.0123 | 0.0358 | 0.0358    | 11.5531 |
| 0.0           | 2.0   | 21754 | nan             | 0.0399 | 0.0123 | 0.0358 | 0.0358    | 11.5531 |
| 0.0           | 3.0   | 32631 | nan             | 0.0399 | 0.0123 | 0.0358 | 0.0358    | 11.5531 |
| 0.0           | 4.0   | 43508 | nan             | 0.0399 | 0.0123 | 0.0358 | 0.0358    | 11.5531 |


### Framework versions

- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1