--- license: apache-2.0 tags: - generated_from_trainer datasets: - cnn_dailymail metrics: - rouge model-index: - name: base results: - task: name: Summarization type: summarization dataset: name: cnn_dailymail 3.0.0 type: cnn_dailymail config: 3.0.0 split: validation args: 3.0.0 metrics: - name: Rouge1 type: rouge value: 42.1388 --- # base ![model image](https://s3.amazonaws.com/moonup/production/uploads/1666363435475-62441d1d9fdefb55a0b7d12c.png) This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on the cnn_dailymail 3.0.0 dataset. It achieves the following results on the evaluation set: - Loss: 1.4232 - Rouge1: 42.1388 - Rouge2: 19.7696 - Rougel: 30.1512 - Rougelsum: 39.3222 - Gen Len: 71.8562 ## Model description - **Model type:** Language model - **Language(s) (NLP):** English, Spanish, Japanese, Persian, Hindi, French, Chinese, Bengali, Gujarati, German, Telugu, Italian, Arabic, Polish, Tamil, Marathi, Malayalam, Oriya, Panjabi, Portuguese, Urdu, Galician, Hebrew, Korean, Catalan, Thai, Dutch, Indonesian, Vietnamese, Bulgarian, Filipino, Central Khmer, Lao, Turkish, Russian, Croatian, Swedish, Yoruba, Kurdish, Burmese, Malay, Czech, Finnish, Somali, Tagalog, Swahili, Sinhala, Kannada, Zhuang, Igbo, Xhosa, Romanian, Haitian, Estonian, Slovak, Lithuanian, Greek, Nepali, Assamese, Norwegian - **License:** Apache 2.0 - **Related Models:** [All FLAN-T5 Checkpoints](https://huggingface.co/models?search=flan-t5) - **Original Checkpoints:** [All Original FLAN-T5 Checkpoints](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints) - **Resources for more information:** - [Research paper](https://arxiv.org/pdf/2210.11416.pdf) - [GitHub Repo](https://github.com/google-research/t5x) - [Hugging Face FLAN-T5 Docs (Similar to T5) ](https://huggingface.co/docs/transformers/model_doc/t5) ## Intended uses & limitations The information below in this section are copied from the model's [official model card](https://arxiv.org/pdf/2210.11416.pdf): > Language models, including Flan-T5, can potentially be used for language generation in a harmful way, according to Rae et al. (2021). Flan-T5 should not be used directly in any application, ## Training and evaluation data - Loss: 1.4232 - Rouge1: 42.1388 - Rouge2: 19.7696 - Rougel: 30.1512 - Rougelsum: 39.3222 - Gen Len: 71.8562 ## Training procedure Training procedure example notebook for flan-T5 and pushing it to hub [https://github.com/EveripediaNetwork/ai/blob/main/notebooks/Fine-Tuning-Flan-T5_1.ipynb](https://github.com/EveripediaNetwork/ai/blob/main/notebooks/Fine-Tuning-Flan-T5_1.ipynb) ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 64 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: Constant - num_epochs: 3.0 ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1 - Tokenizers 0.12.1 ---