Commit
·
d9c6ad3
1
Parent(s):
1e02e2d
initializing repo
Browse files- test.py +58 -0
- test_image.jpg +0 -0
- yolov8n_rubberducks.pt +3 -0
test.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
from ultralytics import YOLO
|
3 |
+
|
4 |
+
# Suppress Ultralytics logging
|
5 |
+
logging.getLogger('ultralytics').setLevel(logging.WARNING)
|
6 |
+
|
7 |
+
# Define models and the test image
|
8 |
+
models = {
|
9 |
+
"yolov8n": "yolov8n.pt", # Pretrained model
|
10 |
+
"fine_tuned": "yolov8n_rubberducks.pt" # Fine-tuned model
|
11 |
+
}
|
12 |
+
image_path = "test_image.jpg"
|
13 |
+
|
14 |
+
# Initialize a dictionary to store results
|
15 |
+
performance = {}
|
16 |
+
|
17 |
+
# Run inference for each model
|
18 |
+
for model_name, model_path in models.items():
|
19 |
+
# Load the model
|
20 |
+
model = YOLO(model_path)
|
21 |
+
|
22 |
+
# Run inference on the test image
|
23 |
+
results = model(image_path)
|
24 |
+
first_result = results[0] # Extract the first result
|
25 |
+
|
26 |
+
# Count the number of detections (boxes)
|
27 |
+
num_detections = len(first_result.boxes) if hasattr(first_result, 'boxes') and first_result.boxes is not None else 0
|
28 |
+
|
29 |
+
# Calculate total confidence score of detections
|
30 |
+
if num_detections > 0:
|
31 |
+
total_confidence = sum(float(box.conf) for box in first_result.boxes) # Convert tensor to float
|
32 |
+
else:
|
33 |
+
total_confidence = 0.0 # No detections
|
34 |
+
|
35 |
+
# Store performance data
|
36 |
+
performance[model_name] = {
|
37 |
+
"detections": num_detections,
|
38 |
+
"confidence": total_confidence
|
39 |
+
}
|
40 |
+
|
41 |
+
# Extract results for comparison
|
42 |
+
yolo_detections = performance['yolov8n']['detections']
|
43 |
+
yolo_confidence = performance['yolov8n']['confidence']
|
44 |
+
fine_tuned_detections = performance['fine_tuned']['detections']
|
45 |
+
fine_tuned_confidence = performance['fine_tuned']['confidence']
|
46 |
+
|
47 |
+
# Calculate the difference
|
48 |
+
diff_detections = fine_tuned_detections - yolo_detections
|
49 |
+
diff_confidence = fine_tuned_confidence - yolo_confidence
|
50 |
+
detection_diff_word = "more" if diff_detections > 0 else "less"
|
51 |
+
confidence_diff_word = "more" if diff_confidence > 0 else "less"
|
52 |
+
|
53 |
+
# Print streamlined results
|
54 |
+
print()
|
55 |
+
print(f" YOLOv8n detected {yolo_detections} ducks with a total confidence of {yolo_confidence:.2f}")
|
56 |
+
print(f" The fine-tuned model detected {fine_tuned_detections} ducks with a total confidence of {fine_tuned_confidence:.2f}")
|
57 |
+
print(f" The fine-tuned model detects ducks with {abs(diff_confidence * 100):.0f}% {confidence_diff_word} confidence.")
|
58 |
+
print()
|
test_image.jpg
ADDED
![]() |
yolov8n_rubberducks.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:530eec1c0e78a72dd9f76b1be67403ec8528d7ad82655510d56930d94ab07cd4
|
3 |
+
size 6250531
|