brand25 commited on
Commit
907bc23
1 Parent(s): dc38913

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1656.07 +/- 59.58
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:174d73f8893b5e4277b1e3e54b395e5c9a48f0683ca58064980485eb107b14b4
3
+ size 129265
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa6b8dff4c0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa6b8dff550>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa6b8dff5e0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa6b8dff670>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fa6b8dff700>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fa6b8dff790>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fa6b8dff820>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa6b8dff8b0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fa6b8dff940>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa6b8dff9d0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa6b8dffa60>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa6b8dffaf0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7fa6b8e016c0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1680016261139326458,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAeQ176c+bo+ZN7aPu7J/T/+yFc/0qoVwDrDl76kk2m+vm8LP46j2T9FkqC/btQQP2ZxeT+irts/T2FXP/rvDkDcseU/uAYavo7QIL4p09w+VtePvwCQET5BS5K9J8gAP2kfkb9PR9s+T7fJPiwZQj9of2y+ItPKPn9N0T459gk/NkAuv3prGT8/YxW/g558v7Pnkj7GZT8/SO/4PoXklD75SiO+d8dGvjhskz8jxO2+20CXP6bv573aWPi96e6GPqzalL+Is0A/n8wvvfXyK7+Py2E/T0fbPk+3yT5X0qi/UbIowNPg4z4fK8E+Y86iv95Udb6Ex189d/NnvgLVgj80D9M/PwbFuzKCvr9I7OO8TzumvpLSj7snt5U/ezjEPArk0z+c2Ro7SG8/P9d1tTyY86K/3uKdOosDpr87kfu8j8thP09H2z5Pt8k+LBlCP/apg79eTGS9MP8WP9eY0b60rsy+WxXiPkaPKz4q7FW/txoxP3yY3j2uo2E+gnbLPfdIBT+izdS+8MSVP8AdxzzTjL0/afDtvpn8Pz8twqI8f6VOv020bD/9wZ2/dGBHv4/LYT9PR9s+T7fJPlfSqL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAQRBM2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAdvOLvAAAAABkCN+/AAAAAA4GDD4AAAAArobpPwAAAACNU6i9AAAAAKGa3z8AAAAA/JuXvAAAAADzuu+/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZnI+tgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgB5CgL0AAAAAF7UAwAAAAAAsxsC9AAAAAHsr8j8AAAAAJPGmvAAAAAD8sP0/AAAAAIvilT0AAAAALHHxvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPFVl7YAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAID2GNu7AAAAAG29AMAAAAAAIL/1vQAAAADDOvU/AAAAAMK4Hb0AAAAALpf9PwAAAAD34zw9AAAAAHmw4L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABu0+e1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAKvURPgAAAABDF96/AAAAAD7YcTwAAAAAgrv0PwAAAACsFqY9AAAAAIVX+T8AAAAA4i8FPQAAAADdevi/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJi+BLPD50uMAWyUTegDjAF0lEdAqWisLKFIu3V9lChoBkdAmMB7ZOBUaWgHTegDaAhHQKlpKtvn8sN1fZQoaAZHQJf5URcu8K5oB03oA2gIR0CpaU7pFCswdX2UKGgGR0CXwR+85CF9aAdN6ANoCEdAqXG1tGd7OXV9lChoBkdAlpB5HI6sAGgHTegDaAhHQKl1Lmgam411fZQoaAZHQJfm5yn1nNBoB03oA2gIR0CpdeWX1J18dX2UKGgGR0CXUr7jDKoyaAdN6ANoCEdAqXYXT1CgLHV9lChoBkdAmi55xBE8aGgHTegDaAhHQKmAhmnO0LN1fZQoaAZHQJjQ3etSydFoB03oA2gIR0Cpg0Sgf2bodX2UKGgGR0CXxSFcY64laAdN6ANoCEdAqYPHggow23V9lChoBkdAmubCVrylN2gHTegDaAhHQKmD57Vrhzh1fZQoaAZHQJZOrP3SKFZoB03oA2gIR0CpjENxlxwRdX2UKGgGR0CYMw3OfNA1aAdN6ANoCEdAqY8GXVsk6nV9lChoBkdAm2r8vIwM6WgHTegDaAhHQKmPgyULUkR1fZQoaAZHQJf533h4t6JoB03oA2gIR0Cpj6gg5imVdX2UKGgGR0CV6W1JlJ6IaAdN6ANoCEdAqZs8oF3Y+XV9lChoBkdAnAUM+qzZ6GgHTegDaAhHQKmeApm29ct1fZQoaAZHQJr13Gp++dtoB03oA2gIR0CpnoFY+0PZdX2UKGgGR0CS++FAE+xGaAdN6ANoCEdAqZ6kDMeOn3V9lChoBkdAlJf5bILgGmgHTegDaAhHQKmnJvwVj7R1fZQoaAZHQJuZt32VVxVoB03oA2gIR0CpqelolD4QdX2UKGgGR0Ca3TZcLSeAaAdN6ANoCEdAqapuGTLW7XV9lChoBkdAmbSnk92X9mgHTegDaAhHQKmqkRwIdEN1fZQoaAZHQJtyCtuDSPVoB03oA2gIR0CptPfwiJO4dX2UKGgGR0CaeSppeu3daAdN6ANoCEdAqbjAqd6LO3V9lChoBkdAmwnqXF98Z2gHTegDaAhHQKm5PhF3IMl1fZQoaAZHQJUK4BXCCSRoB03oA2gIR0CpuWDrAxi5dX2UKGgGR0CXphzgMtsfaAdN6ANoCEdAqcGfQ4S6D3V9lChoBkdAmVhaqCHymWgHTegDaAhHQKnElqSHM2Z1fZQoaAZHQJmWY25xzaNoB03oA2gIR0CpxR14Pf8/dX2UKGgGR0CYreK1G9YfaAdN6ANoCEdAqcU/+hoM8nV9lChoBkdAmY4bEcbR4WgHTegDaAhHQKnOORZlnRN1fZQoaAZHQJLfz7iyY5VoB03oA2gIR0Cp0k2xhUiqdX2UKGgGR0CbEZaya/h3aAdN6ANoCEdAqdMRV6u4gHV9lChoBkdAmiyQlOXVsmgHTegDaAhHQKnTSHuZ1FJ1fZQoaAZHQJjUlBSk0rNoB03oA2gIR0Cp3EbiqABldX2UKGgGR0CYePiIcinpaAdN6ANoCEdAqd8SAQQL/nV9lChoBkdAk/ksju8brGgHTegDaAhHQKnfjZRsMy91fZQoaAZHQJelhcZ9/jNoB03oA2gIR0Cp3693r2QGdX2UKGgGR0CWtnbEgntwaAdN6ANoCEdAqefYx59mYnV9lChoBkdAktOTundfs2gHTegDaAhHQKnrKGBWge11fZQoaAZHQJWhhn5BTn9oB03oA2gIR0Cp69/3N9pidX2UKGgGR0CVk1bD/EOzaAdN6ANoCEdAqewSP0Zm7XV9lChoBkdAl0ZmXokiU2gHTegDaAhHQKn24RIz3yt1fZQoaAZHQJZkRic5Ke1oB03oA2gIR0Cp+aUrkKeDdX2UKGgGR0CXD/jNpudgaAdN6ANoCEdAqfolW+49YHV9lChoBkdAljABPj4pMGgHTegDaAhHQKn6RylN1yN1fZQoaAZHQJg4C0D2alVoB03oA2gIR0CqAoXHJcPfdX2UKGgGR0CY29pd8iOeaAdN6ANoCEdAqgVVmL9/BnV9lChoBkdAmm36veP7vWgHTegDaAhHQKoF4PT5O8F1fZQoaAZHQJjETHggow5oB03oA2gIR0CqBgMasIVudX2UKGgGR0CaVczoUzsQaAdN6ANoCEdAqhFfPLPldXV9lChoBkdAmzl4MSbpeWgHTegDaAhHQKoUPY+Sr5t1fZQoaAZHQJqFVkJ8fFJoB03oA2gIR0CqFMKR2bG4dX2UKGgGR0CdEkXNTtLMaAdN6ANoCEdAqhTl6sySFHV9lChoBkdAm6C1mapgkWgHTegDaAhHQKodUuaF23d1fZQoaAZHQJuNg8lolD5oB03oA2gIR0CqIDf6oESvdX2UKGgGR0Cb96OCGvfTaAdN6ANoCEdAqiCz0rbxmXV9lChoBkdAmYMz2OAAhmgHTegDaAhHQKog1IU8FIN1fZQoaAZHQJxJXfCQ9zRoB03oA2gIR0CqK0Yb0e2edX2UKGgGR0CchvjSG8EnaAdN6ANoCEdAqi88GC7K73V9lChoBkdAnFKs/lhgE2gHTegDaAhHQKovtgLqlgt1fZQoaAZHQJyej6xgRbtoB03oA2gIR0CqL9bEYO2BdX2UKGgGR0CXRdRUFSsKaAdN6ANoCEdAqjf6iVSn+HV9lChoBkdAmQDen/DLsGgHTegDaAhHQKo6q5FPSD11fZQoaAZHQJxR32ys0YVoB03oA2gIR0CqOyVgQYk3dX2UKGgGR0CZruJkGzKLaAdN6ANoCEdAqjtGP7vXsnV9lChoBkdAmEJF9fCyhWgHTegDaAhHQKpEMoLG7z11fZQoaAZHQJun02ETQE9oB03oA2gIR0CqSDqE384xdX2UKGgGR0CbA11c+qzaaAdN6ANoCEdAqkj7POY6XHV9lChoBkdAmYYCVnmJWWgHTegDaAhHQKpJMHX2/SJ1fZQoaAZHQJzCLS9du51oB03oA2gIR0CqUmrZi/fwdX2UKGgGR0CcGYG9HtngaAdN6ANoCEdAqlU/e54GEHV9lChoBkdAm9OE3S8aoGgHTegDaAhHQKpVu2QXAM51fZQoaAZHQJzl4ymALApoB03oA2gIR0CqVdv863iJdX2UKGgGR0CbG6Gt6ol2aAdN6ANoCEdAql3/KISDiHV9lChoBkdAm6+c3Q2MsGgHTegDaAhHQKpg7HxSYPZ1fZQoaAZHQJpcA6ij+JhoB03oA2gIR0CqYaV/tpmFdX2UKGgGR0CcxS4IKMNuaAdN6ANoCEdAqmHW9alk6XV9lChoBkdAmsQHyVfNRmgHTegDaAhHQKpsv2KVII51fZQoaAZHQJhfSGXXyy5oB03oA2gIR0Cqb3rKvFFVdX2UKGgGR0CdVINSqEOBaAdN6ANoCEdAqm/5eb/ff3V9lChoBkdAmnhPN7jT8mgHTegDaAhHQKpwG2w3YL91fZQoaAZHQJyJ0LNOdoZoB03oA2gIR0CqeEgNwzcidX2UKGgGR0CbQqvTPSlWaAdN6ANoCEdAqntikyk9EHV9lChoBkdAmmuDSXt0FWgHTegDaAhHQKp74qXnhbZ1fZQoaAZHQJsVucoYvWZoB03oA2gIR0CqfAWYfGModX2UKGgGR0Cb+aMxGlQ/aAdN6ANoCEdAqod3dEb5unV9lChoBkdAmL2zxTbWVmgHTegDaAhHQKqKN9bX6Ip1fZQoaAZHQJxpmlQ/HHZoB03oA2gIR0CqirR9gF5fdX2UKGgGR0Cdb631zySWaAdN6ANoCEdAqorX8Q7LdXV9lChoBkdAm+BnrIHTqmgHTegDaAhHQKqTQSQo1DV1fZQoaAZHQJdev1UVBUtoB03oA2gIR0CqlgxE4NqhdX2UKGgGR0CYACdYW+GoaAdN6ANoCEdAqpaVanrIHXV9lChoBkdAl71JfMOf/WgHTegDaAhHQKqWwBxxT851fZQoaAZHQJnlmJCSidtoB03oA2gIR0CqoMZccENfdX2UKGgGR0CTNzM1TBInaAdN6ANoCEdAqqUvZCfHxXV9lChoBkdAlkurpmmLtWgHTegDaAhHQKqlwjM3ZPF1fZQoaAZHQJQxngKnei1oB03oA2gIR0CqpeYWLxZudX2UKGgGR0CRrmqQRwqBaAdN6ANoCEdAqq5i+HrQgXVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d12020f1995a46764e45efaa3149c01766c67de8854e84784a85ea20c74101d8
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1d62b0ab75570a22881cd1db2d70224cf111a1b8f24359af82681a83d9b09546
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa6b8dff4c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa6b8dff550>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa6b8dff5e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa6b8dff670>", "_build": "<function ActorCriticPolicy._build at 0x7fa6b8dff700>", "forward": "<function ActorCriticPolicy.forward at 0x7fa6b8dff790>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fa6b8dff820>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa6b8dff8b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fa6b8dff940>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa6b8dff9d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa6b8dffa60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa6b8dffaf0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fa6b8e016c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680016261139326458, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAeQ176c+bo+ZN7aPu7J/T/+yFc/0qoVwDrDl76kk2m+vm8LP46j2T9FkqC/btQQP2ZxeT+irts/T2FXP/rvDkDcseU/uAYavo7QIL4p09w+VtePvwCQET5BS5K9J8gAP2kfkb9PR9s+T7fJPiwZQj9of2y+ItPKPn9N0T459gk/NkAuv3prGT8/YxW/g558v7Pnkj7GZT8/SO/4PoXklD75SiO+d8dGvjhskz8jxO2+20CXP6bv573aWPi96e6GPqzalL+Is0A/n8wvvfXyK7+Py2E/T0fbPk+3yT5X0qi/UbIowNPg4z4fK8E+Y86iv95Udb6Ex189d/NnvgLVgj80D9M/PwbFuzKCvr9I7OO8TzumvpLSj7snt5U/ezjEPArk0z+c2Ro7SG8/P9d1tTyY86K/3uKdOosDpr87kfu8j8thP09H2z5Pt8k+LBlCP/apg79eTGS9MP8WP9eY0b60rsy+WxXiPkaPKz4q7FW/txoxP3yY3j2uo2E+gnbLPfdIBT+izdS+8MSVP8AdxzzTjL0/afDtvpn8Pz8twqI8f6VOv020bD/9wZ2/dGBHv4/LYT9PR9s+T7fJPlfSqL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAQRBM2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAdvOLvAAAAABkCN+/AAAAAA4GDD4AAAAArobpPwAAAACNU6i9AAAAAKGa3z8AAAAA/JuXvAAAAADzuu+/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZnI+tgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgB5CgL0AAAAAF7UAwAAAAAAsxsC9AAAAAHsr8j8AAAAAJPGmvAAAAAD8sP0/AAAAAIvilT0AAAAALHHxvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPFVl7YAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAID2GNu7AAAAAG29AMAAAAAAIL/1vQAAAADDOvU/AAAAAMK4Hb0AAAAALpf9PwAAAAD34zw9AAAAAHmw4L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABu0+e1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAKvURPgAAAABDF96/AAAAAD7YcTwAAAAAgrv0PwAAAACsFqY9AAAAAIVX+T8AAAAA4i8FPQAAAADdevi/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJi+BLPD50uMAWyUTegDjAF0lEdAqWisLKFIu3V9lChoBkdAmMB7ZOBUaWgHTegDaAhHQKlpKtvn8sN1fZQoaAZHQJf5URcu8K5oB03oA2gIR0CpaU7pFCswdX2UKGgGR0CXwR+85CF9aAdN6ANoCEdAqXG1tGd7OXV9lChoBkdAlpB5HI6sAGgHTegDaAhHQKl1Lmgam411fZQoaAZHQJfm5yn1nNBoB03oA2gIR0CpdeWX1J18dX2UKGgGR0CXUr7jDKoyaAdN6ANoCEdAqXYXT1CgLHV9lChoBkdAmi55xBE8aGgHTegDaAhHQKmAhmnO0LN1fZQoaAZHQJjQ3etSydFoB03oA2gIR0Cpg0Sgf2bodX2UKGgGR0CXxSFcY64laAdN6ANoCEdAqYPHggow23V9lChoBkdAmubCVrylN2gHTegDaAhHQKmD57Vrhzh1fZQoaAZHQJZOrP3SKFZoB03oA2gIR0CpjENxlxwRdX2UKGgGR0CYMw3OfNA1aAdN6ANoCEdAqY8GXVsk6nV9lChoBkdAm2r8vIwM6WgHTegDaAhHQKmPgyULUkR1fZQoaAZHQJf533h4t6JoB03oA2gIR0Cpj6gg5imVdX2UKGgGR0CV6W1JlJ6IaAdN6ANoCEdAqZs8oF3Y+XV9lChoBkdAnAUM+qzZ6GgHTegDaAhHQKmeApm29ct1fZQoaAZHQJr13Gp++dtoB03oA2gIR0CpnoFY+0PZdX2UKGgGR0CS++FAE+xGaAdN6ANoCEdAqZ6kDMeOn3V9lChoBkdAlJf5bILgGmgHTegDaAhHQKmnJvwVj7R1fZQoaAZHQJuZt32VVxVoB03oA2gIR0CpqelolD4QdX2UKGgGR0Ca3TZcLSeAaAdN6ANoCEdAqapuGTLW7XV9lChoBkdAmbSnk92X9mgHTegDaAhHQKmqkRwIdEN1fZQoaAZHQJtyCtuDSPVoB03oA2gIR0CptPfwiJO4dX2UKGgGR0CaeSppeu3daAdN6ANoCEdAqbjAqd6LO3V9lChoBkdAmwnqXF98Z2gHTegDaAhHQKm5PhF3IMl1fZQoaAZHQJUK4BXCCSRoB03oA2gIR0CpuWDrAxi5dX2UKGgGR0CXphzgMtsfaAdN6ANoCEdAqcGfQ4S6D3V9lChoBkdAmVhaqCHymWgHTegDaAhHQKnElqSHM2Z1fZQoaAZHQJmWY25xzaNoB03oA2gIR0CpxR14Pf8/dX2UKGgGR0CYreK1G9YfaAdN6ANoCEdAqcU/+hoM8nV9lChoBkdAmY4bEcbR4WgHTegDaAhHQKnOORZlnRN1fZQoaAZHQJLfz7iyY5VoB03oA2gIR0Cp0k2xhUiqdX2UKGgGR0CbEZaya/h3aAdN6ANoCEdAqdMRV6u4gHV9lChoBkdAmiyQlOXVsmgHTegDaAhHQKnTSHuZ1FJ1fZQoaAZHQJjUlBSk0rNoB03oA2gIR0Cp3EbiqABldX2UKGgGR0CYePiIcinpaAdN6ANoCEdAqd8SAQQL/nV9lChoBkdAk/ksju8brGgHTegDaAhHQKnfjZRsMy91fZQoaAZHQJelhcZ9/jNoB03oA2gIR0Cp3693r2QGdX2UKGgGR0CWtnbEgntwaAdN6ANoCEdAqefYx59mYnV9lChoBkdAktOTundfs2gHTegDaAhHQKnrKGBWge11fZQoaAZHQJWhhn5BTn9oB03oA2gIR0Cp69/3N9pidX2UKGgGR0CVk1bD/EOzaAdN6ANoCEdAqewSP0Zm7XV9lChoBkdAl0ZmXokiU2gHTegDaAhHQKn24RIz3yt1fZQoaAZHQJZkRic5Ke1oB03oA2gIR0Cp+aUrkKeDdX2UKGgGR0CXD/jNpudgaAdN6ANoCEdAqfolW+49YHV9lChoBkdAljABPj4pMGgHTegDaAhHQKn6RylN1yN1fZQoaAZHQJg4C0D2alVoB03oA2gIR0CqAoXHJcPfdX2UKGgGR0CY29pd8iOeaAdN6ANoCEdAqgVVmL9/BnV9lChoBkdAmm36veP7vWgHTegDaAhHQKoF4PT5O8F1fZQoaAZHQJjETHggow5oB03oA2gIR0CqBgMasIVudX2UKGgGR0CaVczoUzsQaAdN6ANoCEdAqhFfPLPldXV9lChoBkdAmzl4MSbpeWgHTegDaAhHQKoUPY+Sr5t1fZQoaAZHQJqFVkJ8fFJoB03oA2gIR0CqFMKR2bG4dX2UKGgGR0CdEkXNTtLMaAdN6ANoCEdAqhTl6sySFHV9lChoBkdAm6C1mapgkWgHTegDaAhHQKodUuaF23d1fZQoaAZHQJuNg8lolD5oB03oA2gIR0CqIDf6oESvdX2UKGgGR0Cb96OCGvfTaAdN6ANoCEdAqiCz0rbxmXV9lChoBkdAmYMz2OAAhmgHTegDaAhHQKog1IU8FIN1fZQoaAZHQJxJXfCQ9zRoB03oA2gIR0CqK0Yb0e2edX2UKGgGR0CchvjSG8EnaAdN6ANoCEdAqi88GC7K73V9lChoBkdAnFKs/lhgE2gHTegDaAhHQKovtgLqlgt1fZQoaAZHQJyej6xgRbtoB03oA2gIR0CqL9bEYO2BdX2UKGgGR0CXRdRUFSsKaAdN6ANoCEdAqjf6iVSn+HV9lChoBkdAmQDen/DLsGgHTegDaAhHQKo6q5FPSD11fZQoaAZHQJxR32ys0YVoB03oA2gIR0CqOyVgQYk3dX2UKGgGR0CZruJkGzKLaAdN6ANoCEdAqjtGP7vXsnV9lChoBkdAmEJF9fCyhWgHTegDaAhHQKpEMoLG7z11fZQoaAZHQJun02ETQE9oB03oA2gIR0CqSDqE384xdX2UKGgGR0CbA11c+qzaaAdN6ANoCEdAqkj7POY6XHV9lChoBkdAmYYCVnmJWWgHTegDaAhHQKpJMHX2/SJ1fZQoaAZHQJzCLS9du51oB03oA2gIR0CqUmrZi/fwdX2UKGgGR0CcGYG9HtngaAdN6ANoCEdAqlU/e54GEHV9lChoBkdAm9OE3S8aoGgHTegDaAhHQKpVu2QXAM51fZQoaAZHQJzl4ymALApoB03oA2gIR0CqVdv863iJdX2UKGgGR0CbG6Gt6ol2aAdN6ANoCEdAql3/KISDiHV9lChoBkdAm6+c3Q2MsGgHTegDaAhHQKpg7HxSYPZ1fZQoaAZHQJpcA6ij+JhoB03oA2gIR0CqYaV/tpmFdX2UKGgGR0CcxS4IKMNuaAdN6ANoCEdAqmHW9alk6XV9lChoBkdAmsQHyVfNRmgHTegDaAhHQKpsv2KVII51fZQoaAZHQJhfSGXXyy5oB03oA2gIR0Cqb3rKvFFVdX2UKGgGR0CdVINSqEOBaAdN6ANoCEdAqm/5eb/ff3V9lChoBkdAmnhPN7jT8mgHTegDaAhHQKpwG2w3YL91fZQoaAZHQJyJ0LNOdoZoB03oA2gIR0CqeEgNwzcidX2UKGgGR0CbQqvTPSlWaAdN6ANoCEdAqntikyk9EHV9lChoBkdAmmuDSXt0FWgHTegDaAhHQKp74qXnhbZ1fZQoaAZHQJsVucoYvWZoB03oA2gIR0CqfAWYfGModX2UKGgGR0Cb+aMxGlQ/aAdN6ANoCEdAqod3dEb5unV9lChoBkdAmL2zxTbWVmgHTegDaAhHQKqKN9bX6Ip1fZQoaAZHQJxpmlQ/HHZoB03oA2gIR0CqirR9gF5fdX2UKGgGR0Cdb631zySWaAdN6ANoCEdAqorX8Q7LdXV9lChoBkdAm+BnrIHTqmgHTegDaAhHQKqTQSQo1DV1fZQoaAZHQJdev1UVBUtoB03oA2gIR0CqlgxE4NqhdX2UKGgGR0CYACdYW+GoaAdN6ANoCEdAqpaVanrIHXV9lChoBkdAl71JfMOf/WgHTegDaAhHQKqWwBxxT851fZQoaAZHQJnlmJCSidtoB03oA2gIR0CqoMZccENfdX2UKGgGR0CTNzM1TBInaAdN6ANoCEdAqqUvZCfHxXV9lChoBkdAlkurpmmLtWgHTegDaAhHQKqlwjM3ZPF1fZQoaAZHQJQxngKnei1oB03oA2gIR0CqpeYWLxZudX2UKGgGR0CRrmqQRwqBaAdN6ANoCEdAqq5i+HrQgXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (987 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1656.06996872148, "std_reward": 59.58073772063773, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-28T16:11:31.515768"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ec5b39e69e2e8d700bfa5d36e4d2c4e26f57489667cfaa35a11a7069ebcaf7c9
3
+ size 2136