brcps12 commited on
Commit
4da0fb9
1 Parent(s): 8059465

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1155.61 +/- 529.39
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9dc03ccef3325947a577446e3011abfa48f96aa2caa8cb0875b0a39bf778b0b8
3
+ size 136381
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0a2
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7cb0144320>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7cb01443b0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7cb0144440>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7cb01444d0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f7cb0144560>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f7cb01445f0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f7cb0144680>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7cb0144710>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f7cb01447a0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7cb0144830>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7cb01448c0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7cb0144950>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f7cb018eae0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWV7gwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpRoMIwFc3RhdGWUfZQojANrZXmUaBIolsAJAAAAAAAAX72URNWqY4/fmoBp6zv9Z0ge7oTLDonSU+8yODQTiosYug49wgGfIlFppb0d7KnQqzgjplFxDKa+1S2pCRQ6FhSRwbCtlztIx5kRTKbrQs/zIGPHq9B1WZv8QTaithz/ayIPA0J03upvWWTCmZHPert1x2hEYoyViDseG9QUquwNCvZUPWDY0qhcXZ/bXgxr9jXcYPM+C3HNjSlh9czWvst3JOPwoV2aWr/L4WJrRCZcvt4Zjo5JXKQ4d/BbW+iJYvDFND6lw4KmY9Uo8LQdEEjkpVx3QB4fH8sJmQf+SNy3W2Zl8TrsjBOqMzQXP1WV5w2ygp3PawT/yPAeYEwUaFXAMUtMPEg9LHpagaJAVVM3cNN7Zxuc6EHXiC9SbZWRqnD98OtOGTSYi/EXcbSUbV689tHC0ruvktE7mqKaD1NyVCw6lYWwINVpuYhbZ0+8jhearcSwQluI7Er3qwt0atuGvp9sG/tc2wJQ24TGEGg+CMq6OmjkzN+lLY3dn0RQWDbOrXB04ixlsDHw8VtjhrCDGPMxUNQi0fHIcJ9SPMHAINHmQRRF/XnnSyHt4KPvoqKpxrJ8W9nBuDFwb465V0GDkLgpUFAZIip1ugE0YtShBISuky8aD0/Muc4jIIM20t1AJ3evUBPGm+rnbY1HP1hz0TuONLXISOMJLQwn03bviCg4mBg5jRPcOYhl8omTSumDUA5WxXnH8WmtVGtq92uGIsdjibABN7Jf+jSXHoRJoWUaDrp9CBoM+cR/ey2bpfWWgNgxLJfGkhNDKeyS7XLF2SG1Rg7pCa4m3Y42RfrzRFBq1a/MKJhl434VT8KoRPE+b4BW8F5KfsQURW9eKYJABfa7nfpH3rbXCzzqeley0Ef+tvCm0FzxrW/ePMPoIlDVXlWaViDzeGPNyxhMO5LAZM6N04/mUQ2FFQF+D5CXfWyBHEyPFk04LoXFJWQY3hvGq2f1pSwy3i3Kp7knQVCmoDO7J5NXSRSSBDusMB9uUE9HhB3JzYkAOTmb3Cp/8uts5VxyE/GLr0Sf5OjyeRtmwM7Ut4YlZi5E0V+gc6viRSQKXfNIFLG4vo4scKalpbvOqTqpSGU9w6XJWCjVFgxUwZFirq676I13NL7fVY53AfthtKWDpsR1PpA466dS4vg+UcZpwsFv76M+Zzj7BD7QEVobwqOxpubB1bwfoi/WqyME1MiF0sCRjhzZBHfV4A0egAbElte1YzjBxU207qEEUD+HJyWdr5d9NsZECOWJxOd+qKR6gZdQb791C9MaNUavY2jyQODpsM+P7c/nUqbpgLIsPEFSYj75zUg1Mcj5ggCIxngvc7FL7q/HLU7AGX0o8+f60/IMjiHlJnjrO70Q8oaq/wU3Ggqh8ZAnWwU/JXmFh9ISPqbvdbgYwjgvHDVucQPRjf6DmvxI/5Sa8XKz5p2VbqJgIDlItgI0zIvh+TEFMYd8a2K6q8tJYeWq6h0O86oh0CcSGDQxyZaBKj2dvGYAQNunJSGDUQmVPu49/cNX/TRo3P2/BTY8g6IwItfaten0QY1MTlwNuHW78SyHESajWgYA868+a3wsH3nuE0eQmcDZkbLWTxU/Y4MF9nN5v1fqEdhLT/40f3lwhIocHHEPiAXHFpbNGNO8VgLsXg8AcdDla97mHBab8/G2ViPHGhGm1QzdCPfnGPyxYJZTYlwspO+tB5qo+coWC54R59Y6ZmrNUGx4CVL8MH6pO0Tz8qli+McyV7TZHrbaWCW/7rpSHX0Qmdap/jMZQnMf906jDlUiRA18BFWwVmAusghdA+a5hPkuuB05YolRVi9HJJ/dcK/63tLIXR0BVJnUItjyfs4tW8KQIrRD3B/M3czdTA6NjGn7RewQWQ0tUL0Fv/MWhtys3g8N6qIEzj4Kz2mPZFanxp9b76Gl4f5ADOv7LXVdMCtAnNHgLPDbnB6JggESsy3oWmccegRPH2VN1N+U5oPMPBAWIofW2+5SThuR33c+2/aJx+H9YQ4x19Nu1RetCK8e8nE7weGi7xLP4xVmYyqAPvuqLHKw74aAaFoNgXCiW2jZuLXuxEAIH/RFJvbH5FrA/NySa1m9sZ5P1Ji6M087LBmg2hudMzMxDWwpIkuvhVP/tww1JOTUMTFUFDz18GlxAM3fyHr1WY9AYjG3nlAOdqhyUTbFdCgx5qI8iZL5CvhCKgdm8hFhBY39ZLpCZQLQQqqHQ96XGasqq18iCf1wYmcUhndjHLESFwlWeoSXHwn/8RLgidZVS6Rwk9YyM1Nne+WCxSzGlA/UlLFBHbW6OOs4FVkLJwZg5xv49CDdQUMzF4JiPVducirrTE4t++6GFrBi91HiZUHOv9CQBtHyYDWT+wKVRcB8+3slkgzSHoEqtDjPZb4YPcCm04ntrhn0kfw+NEEdQmITLqXR+EWYQL7MT2tkjvaMRrY/Za+ZR/0dHZrFBJtyYNOR9kp2mex/08ToIgA9UOaPD2VScjHsbeoowKS5C9EF0I9pB0A/o35Zmd6o6Yjaa1pWcs6Rg9YdzIxgAJBob38E1NWIqU2ZiiDkhmdeLI9Irzx72NAEBxinv6Ww903H8P/KARjpzLAkQFHsQmBfeGLXeNVZuZWhFXIA6inknA+gjSeNSXAkGa9DxkwozaMFU1XWdid2l3u2Tq2/TkLr/lYWuPqNHPvVLt/fWFfkKTLu2oSpPaow73kMEe1uWOqHVaSxaT/mqTgpXxnfY/Yx3wDfq1STdvVokQk26bgNyhoRb5BxskeM+FRub2guU8T7VFpTYb6PvD2c6tDMv6E8YvPJOUI9CBfnHBYT1ULNn+YJzAuEVYWxv5nvaJ/eGaF7fmpDkDLKaPg5PkU2/r3hkXUSHmMNiZ1JKP5IgYj53ZaiJ+51ZJ6QkdYyw50vrfytqWEWp6rdKR/DhkBdDLMyPtXgLYezJknn+HDG8/1C9TCrRFjh7S7d0GqwyrgAcUKak/G4MM0KDoEaYf7vwLgYfYOUajIXl5T1Kz01bMSBJWNBya1oEFbO72U68H7gwOoFRHDjkSYQbywzT5wWvjFrAPAlLw2o/tYyN8m4XRNjbPd/nAVcGzQrwLgXrBnCroerLT3SnVXwUuY1V1utderIBwK6hNUNHC0fm8RIFqgoM8EDy9PWAP0H6AehK10gOuyMVmdp5j4ZIN9xUSGpppCLqU+ZR7UZ3OJz4tEo1lTrVr9KikQC25Tnla1tg0RrkuS81sjuRZWi5KhE4IfFCNQ6wWQsMUKOXsOSpmA9Z7UTHx/CSr3aniLQY7FflqL/IS99GSKGcrgftAQuQuT7roUUXbXyQR7kbDgHC1Gl35V9gmuZlGgHjAJ1NJSJiIeUUpQoSwNoC05OTkr/////Sv////9LAHSUYk1wAoWUaBV0lFKUjANwb3OUS0B1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": "RandomState(MT19937)"
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVJgwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaDCMBXN0YXRllH2UKIwDa2V5lGgSKJbACQAAAAAAAMji+n69u0Fes6ibuN6BLciDnxBMAHfOVABJtOWMlOTy6oCk9yE31GHUufJmKGsZc3LrVwLUyA5E5uDJ90v50dfGGAE0ZJz2Ov7OX45wcmph55Lp5Fxlr1pArQKxtRbiRFztki6JAjDZMhZdy7fl7RVd5KU5ZNYfiX+NlgyP0093fpmpl2eaahbox+Pl9F5+QCTmxezWwkooQ+LFvwQfxiismhRGRKi9YWGe/jwozj3MXfcoYYToPaCM+BTA46hBtWkW7ioiMmMccFqH4RBrqIjGVxKl0F3ZkzfgVHkg9g9nnMbcgN9+o0nhsyVsmT/XPfV6EgkV0H9u7Mfl010QUW4OjFShu+5T+hUpvlUqX9H2/ZzEF1eZSR9DH+bIOyjLWRRUkt6PSxYC+BPauC73FFcku/ZA0u95O6omaDyF2fm0OdzLDPhuJcdJu48gHJnAsYbf7s59GpbzUqCVtdNcYfxtzsUGcKV1PNEzjLQxtM+AvsNQw8kWT3wdHwNa16nMYa851tqCH84027rXppSnZwwbtM9YOKjeWFuCJJ3T/mmV7RE5QzMlKkRIn5xslbAkodaj5BfWAb1qCEDEJxnwJYz6W3u9Kjnu/9NM39QJO2lofGTlnt9FPQ3th9O01OZOVsx5x2mIwD6dqOaTDUYYYUdhL377Xam9fTY/nKVcOozuoxQmFYMaebuUc+soDahOMAA4VZBdJ57OI8/050XAXx52eBzASZYeyF6oTWTUCDDYGhN2/GMlDOr/qb+lw3Cc0Ebm1JpSbYG1lcZ6JdJkWuwWNI6ENZuJiiEphEtbfZs2m6TIjQMhqxOPMeeGR7ewC6eoaF2wT47boAF97RNHGz/9t409PsQ5al0nM9c1mmnyn2kITPy9AYtlKRaLBTqn089eQ85C+93xQrQCHjMJ31RmRyZfmENmK38Ssv5KMWsCP6esUf0+neKCG0uEMSCLDoY6RgObxfuuN5EQ9gfLJfLFOdeJKus+30u5wR1GocnQfaAdUSeu0w1yiiKxXZhwEciBf1faR1/GE2RB9sdoCxJuBcWvkjDZM04HQA0UuPZbyNpULQo3+9yu815m13d9+k6mjF2jPJ61qdl2BQ/Hd2BpOvW/xMOifx+IDirkI4PK979mIYpt4x5Uu7dj8LVH00pVdMdpok9FXiZLPPR7WFJJhTxOe/oytRxLBc2RCMjrQvM/oMYJ2GU3twyz/6qQ2Lqyhhmw/jD8iZ5aXfyPmhmvq8IZ0ZYG3NdOVjnSvn0B8iI6TrA4Fjt/cx70Is7IM9YyUATCNhuKr+CU0QhG6PKFd8Jv4Q8Lgu7yQGSDWviNqapgSau7dSWBKVaO0ZX3DsLs2KW8MQiwHsFtDr0Ek2fl5sI98P1Z58f4okIfiBmpnGR2QGvAIVFy4VxY/uoSepC8xlf7rgFZnxiv+49LT9BeDVuYw3nZ+dMHufwCUEzo0kRORR1xjSQYt9jZRwlmcInmJEi1QLjfcnjPaKinMzKWP4Y4Jucfn23YBBAE+K9FGp0ed/naWTD0BczKYWzkl9tToySztd8Z+70UMt9yhAMZ+3XC799l+l36Lq5emZp0SqSFaM83IgTsmID4swKCMSmFiA+XdpC0HDQgpw+1h9W4X1uDam3HrfFfWCct1uOqEQ6HU7k1C8KA1F4GLeFfcRPA+YJvlJ+x9fYew/7jxpKWU7IshLCdRwg8D9f22cwpM7ZB31LR8V+9VibFvjZxOusKk65JLiEIWPVEqphSnFybNQ0M69mhLOj/g9mmPLIpms5In6/4zEHNOSElzr3y6TBYLlb/7dqwGbniENmywzoFxxo3F7L6dTAjfLTCeV1w39R/wrHnvWwYhaUxoKdDfB6Mn6vnQTeTmLJhM0ztc3tD0Mx/kNInHnVeUc1/sa1wz8hmqfSDHXvpn7JJD5fajHQt7iPPO6Um2xvUgakRtBbHVTamXnFmN0YkFsjOYlELgXHWdY8kogk+GiaRw35MBOq7WgzZufPtxKu4hYEP21YovI62bdo3N6N3/JNT3jKs/mYDcRLxCA7eV/Vsh4rpA1ZfJvegx9fLeJjZJQtWNoWsMTaiai41+kpLm1k4avHx90eJmXA1G8ngoRr6pwVkWgx3Bvy84EeMd2byNTDGvmsfph24hQW7AYQnt1qC6xzAT7GVAWycqUoFB0Mq24xjK4oIt0ixKSuybcPfUFnefLQ0YtSuVyM1BMvjCJItwiEeBBt3E/gvX5NPOe/80PaLfYEv0XEQStmmIWbPDQiZsP/mgnY68bvi7P2n4/XYT6fDUOjLrgGfZjQfxcn3AftOI214XyOJo4m9uqiQmucLxQvjmjBI/bJGCHRtP17+mLWFL88kfmKM8NlI+rJ+kHw59WYUTEJYI2DMxsxaO+Z+mF7hYYwnYvVn1/Z0PUR9Sh6LJDKj3c76YT5+gRNuNhHN7MkL5ni3b6ciYDIvisuTUGwluSYA8oxnc0S6+fSyc5YGuamowC1iwGuwh9RvlFxkXtk/Be4SH31IHs2x/3iNjWmzLK70iOEdnpKnMI5KbSsgS7YoGd3VJ70VU/2mOidOII14Jxql4bpuF6pIKhHvkoLNqXJBccbuJ5ltTYa3W4DcRyJYwbqVH0JncinCFDpV6oPqIIJ62vbW4tkx1aNc0PQlwIqfCZHwKxfOV1G7tfreTb3loJ5eSoPhspJavONpNrE0VOrCducea6CE891hqzCpvzYDVEDCkTVxZmMTYf00mRxgsBKIiBPZA7Plvb0FoKbgHUeqT/nCWZQNzi3tD6wFj+E5L7ZnHqICizR7/ZkSUbX2X7r0t8k7cihMiBdPXW5mvVX58EZKcNcy3PV8XdGaAnciNcPJxk1L0WeozEWj4pXkIB8UdfRG+USqaj5RaBxFAiWOzDf+mqU/CLgKLyS7YsBiDweKsLs4x1Zz2WvrKH0NYmzweubTERBxph17NpFLt6MVstTQhv/LNfZC2XGEKMU7mSv76TSwGVLQ/ZS3Q5BOC1AKjTAXMFn6MsyesrPphFPOFgl1whbTY4EhJRMPDM0f2rorD77yu1OoUP7XRJU5iAfNT4xeoyEGoAdXGdc9Al9bI26jhy9CP6a9+8+PbCku04Q+9X7EkjAiVvlZS2PPhyU9/bS6ssPyj55wNVjPzZkFOyBH6Wa86MDbHe8vNvSihnWjqOhnlcYu4KtFCshB2aCAF//OOa3bq+1mynFRYQZca/UYkkpF0CPgTYmvqvB4ber7jHyB2ywavbX3+8s1Dv+CfJH/xgUDYUu9/deDMsPst0ae0jVS+We1L11k8SprGy6paXu2euwKWnozgYvvyrGujCLZKDuqaAZ7w5RoB4wCdTSUiYiHlFKUKEsDaAtOTk5K/////0r/////SwB0lGJNcAKFlGgVdJRSlIwDcG9zlEsQdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YnViLg==",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": "RandomState(MT19937)"
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1675407097863897022,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAI+Goj5b2WM9qP+2wIbYxb1EkS6/MyX/Pj3Z3b+KnPw9222avi5hQj6eJ9W+9TugPSEp/T+j5+U+XywWP245hL7WpIa/2NwAvyOql79SQd4+/jkTQIIenztCPWC/SGpqvOyqQz+M380+4qsIP+T1dL8XjKe+67WNv0WJ076ijVe+CvmTv8fUUD61l7a/PsUbP0cahL+5DDk/9lEbv3KIyT64WRpAdUYQvbV3fD6rLME/KP2VP7hWRT8aqnC/foN/wCzvID/uy94/YXeLP44BsD7sqkM/jN/NPuzB77+8xIU/N3ppPyt2yj8bcG0+hRlRPy8+ub81A9G/R39Bv6OOyb8NECC+8kjYPrq00L1d/yjAhQg6v4CgC0Ba0wU/VfFnv9PG/D4pwUNAjOM2Py8kJDwgn0G/PPycPhR0hD+geUhAtnenv4zfzT7swe+/5PV0vz7Qaz/KmPe9YFkCP7Oz+D+ot6o/9dciP5EkDj8obADADyMMP+tfXj+IsLC+OGmCP0zgLj8a86s/Y84fP6hX2b3LO1s/5v7ZPNmgwj70J3g/5QJLvyxUiTlO2ds/qoTcv7Z3p7+M380+4qsIP+T1dL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAPGSM1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAei5fNwAAAABDz+y/AAAAAG3Z1T0AAAAA3k7cPwAAAACrKdG9AAAAANUd7j8AAAAA5LK4vAAAAADvbu2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2MOWNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgFTcAb4AAAAAlr/kvwAAAAAiI6g9AAAAAE9u4z8AAAAAI+fSvQAAAADeuwBAAAAAAJt3sr0AAAAAi1X4vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJlMDzYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBzPBO9AAAAANRM278AAAAAOKUBvAAAAADqcv8/AAAAAAReI70AAAAAfkjwPwAAAAAmetm9AAAAAM2r3L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACqwxA2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAkEFCPQAAAADRHd2/AAAAAMC+dr0AAAAALJHiPwAAAADmgsQ9AAAAACAb+T8AAAAAvWjhvQAAAADKAt2/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJnwW7BfrryMAWyUTegDjAF0lEdAprhTnkkrw3V9lChoBkdAmm2noX9BKWgHTegDaAhHQKa6aUpuuRt1fZQoaAZHQJecAI8hcJNoB03oA2gIR0CmvrUe2d/bdX2UKGgGR0CXaXT8YQ8PaAdN6ANoCEdApsFj04BFNXV9lChoBkdAmcE7fUF0P2gHTegDaAhHQKbCqSteUpx1fZQoaAZHQJnbj0cwQDpoB03oA2gIR0CmxLP7WNFSdX2UKGgGR0CW1nAGSpzcaAdN6ANoCEdApskCMzdk8XV9lChoBkdAmZXc50bLlmgHTegDaAhHQKbLyqEvkBF1fZQoaAZHQJY+gXrMTvloB03oA2gIR0CmzRBRyfcvdX2UKGgGR0CZHO6N2ki2aAdN6ANoCEdAps8hdUsFuHV9lChoBkdAmDWRKYiPhmgHTegDaAhHQKbTgxgy/K11fZQoaAZHQJjohpmEoORoB03oA2gIR0Cm1jpmNBGAdX2UKGgGR0CZeSGoaUA1aAdN6ANoCEdAptd854nndXV9lChoBkdAllf4fCAMD2gHTegDaAhHQKbZljuKGcp1fZQoaAZHQJb7RJHy3CtoB03oA2gIR0Cm3fIAGSpzdX2UKGgGR0CakdbgCOm0aAdN6ANoCEdApuCwSteUp3V9lChoBkdAmaNZMpPRA2gHTegDaAhHQKbh9TSb6P91fZQoaAZHQJg2+JVKf4BoB03oA2gIR0Cm5ATGYKIBdX2UKGgGR0CakW3DNyHVaAdN6ANoCEdApuhZR/EwWXV9lChoBkdAl1vimEXcg2gHTegDaAhHQKbrEF0PpY91fZQoaAZHQJZycKUmlZZoB03oA2gIR0Cm7Fim/FisdX2UKGgGR0CYIOMnJDE4aAdN6ANoCEdApu5oJRfnfXV9lChoBkdAmGIlbFCLM2gHTegDaAhHQKbyyR2bG3p1fZQoaAZHQJvzgGQjlgdoB03oA2gIR0Cm9YdZid8RdX2UKGgGR0CcJ8OiFj/daAdN6ANoCEdApvbPZf2K23V9lChoBkdAmPisa0hNd2gHTegDaAhHQKb46sU7CBR1fZQoaAZHQJb0qxX4j8loB03oA2gIR0Cm/U/n4fwJdX2UKGgGR0CWYW4sVclgaAdN6ANoCEdApwAE4T9KmXV9lChoBkdAmpd6dUbT+mgHTegDaAhHQKcBSxFAmiR1fZQoaAZHQJeZ38R+SbJoB03oA2gIR0CnA1x6OYICdX2UKGgGR0CU86yLQ5WBaAdN6ANoCEdApwerZFocrHV9lChoBkdAmXNThLoOhGgHTegDaAhHQKcKYhcqvvB1fZQoaAZHQJc0DHCGetloB03oA2gIR0CnC6nVoYeldX2UKGgGR0CZDluPFNtZaAdN6ANoCEdApw25YigTRXV9lChoBkdAnF8hv3rUsmgHTegDaAhHQKcSCKMNtqJ1fZQoaAZHQJlwo3sHB1toB03oA2gIR0CnFMgnMMZxdX2UKGgGR0CW97yT6i0waAdN6ANoCEdApxYMIzFdcHV9lChoBkdAmpnwB91EE2gHTegDaAhHQKcYF8VHnU51fZQoaAZHQJo/4GJN0vJoB03oA2gIR0CnHFi4SYgJdX2UKGgGR0CbJMhFEy+IaAdN6ANoCEdApx8Mnb7CSHV9lChoBkdAm8so1+AmRmgHTegDaAhHQKcgXRAKOT91fZQoaAZHQJdbQ9LYf4hoB03oA2gIR0CnInUaAFxGdX2UKGgGR0CaeraK1og3aAdN6ANoCEdApya9f/m1Y3V9lChoBkdAmBp9diUgS2gHTegDaAhHQKcpajqv/zd1fZQoaAZHQJmQm2Zy+6BoB03oA2gIR0CnKq2b5M11dX2UKGgGR0CcK8D1XeWOaAdN6ANoCEdApyzJNTLntHV9lChoBkdAl9tnzH0btWgHTegDaAhHQKcxLGo73f11fZQoaAZHQJwQuiO/+KloB03oA2gIR0CnM+BCMPz4dX2UKGgGR0CY8BBxxT86aAdN6ANoCEdApzUllsguAnV9lChoBkdAmtqQUQCjlGgHTegDaAhHQKc3NuGbkOt1fZQoaAZHQIVeU1hsqKBoB03oA2gIR0CnO4N/4IrwdX2UKGgGR0CbmLudf9gnaAdN6ANoCEdApz4xkXk5qHV9lChoBkdAmJ/yCJ40M2gHTegDaAhHQKc/dLpRoAZ1fZQoaAZHQJn5IYsNDtxoB03oA2gIR0CnQX9ZJTVEdX2UKGgGR0CY/bxagVXWaAdN6ANoCEdAp0XIJu2qk3V9lChoBkdAm6nGozeoDWgHTegDaAhHQKdIeiaAnUl1fZQoaAZHQJgiyI9C/oJoB03oA2gIR0CnScKMWGh3dX2UKGgGR0CX8aaTwDvFaAdN6ANoCEdAp0vOTTvy9XV9lChoBkdAmjRGyPdVN2gHTegDaAhHQKdQCl+mWMV1fZQoaAZHQJdVJtGd7OVoB03oA2gIR0CnUr5LqUu+dX2UKGgGR0CUfjiZv1lHaAdN6ANoCEdAp1QA2fkFOnV9lChoBkdAlLbu0b961WgHTegDaAhHQKdWDbh3qzJ1fZQoaAZHQJgOVPepGWloB03oA2gIR0CnWl8L8aXKdX2UKGgGR0CMMsjGDL8raAdN6ANoCEdAp10Z02cawXV9lChoBkdAk3vx5C4SYmgHTegDaAhHQKdeWkJKJ2t1fZQoaAZHQJpBtEc81XNoB03oA2gIR0CnYGMyad+YdX2UKGgGR0CajKYQrc0taAdN6ANoCEdAp2ShnUUfxXV9lChoBkdAmcykfcN6PmgHTegDaAhHQKdnW0mdAgR1fZQoaAZHQJjIgasIVudoB03oA2gIR0CnaKCPQv6CdX2UKGgGR0CYopzByjpLaAdN6ANoCEdAp2qnnU2DQXV9lChoBkdAm9jajesPrmgHTegDaAhHQKdu2lqrR0F1fZQoaAZHQJOvHn4fwJBoB03oA2gIR0CncYdMK1G9dX2UKGgGR0CZrAG3nZCfaAdN6ANoCEdAp3LGyu6mO3V9lChoBkdAk0rFqrR0EGgHTegDaAhHQKd00fbsWwh1fZQoaAZHQJffqMVDa5BoB03oA2gIR0CneR6N+9amdX2UKGgGR0CM8p+vyLAIaAdN6ANoCEdAp3vVpCa7VnV9lChoBkdAlc0wtnPE9GgHTegDaAhHQKd9He0G/vh1fZQoaAZHQJSPJfv4M4NoB03oA2gIR0CnfyXXqZ+hdX2UKGgGR0CXEEIqLCN0aAdN6ANoCEdAp4NhUT+NtXV9lChoBkdAlpY7rcCYC2gHTegDaAhHQKeGESidrft1fZQoaAZHQJZHvpB5X2doB03oA2gIR0Cnh13xnWaudX2UKGgGR0CWIiKWszVMaAdN6ANoCEdAp4l8DnvDxnV9lChoBkdAgvWZhScbzmgHTf4BaAhHQKeLePxx1gZ1fZQoaAZHQJRcranJkoZoB03oA2gIR0CnjdMmF8G+dX2UKGgGR0CXe5nb7CSBaAdN6ANoCEdAp5HNkxyn1nV9lChoBkdAmbhe+RHPNWgHTegDaAhHQKeT3mthd+p1fZQoaAZHQJba+Ixgy/NoB03oA2gIR0CnlcdBKL88dX2UKGgGR0CXxi93bEgoaAdN6ANoCEdAp5ghTyauwHV9lChoBkdAmGbB0ZFXrGgHTegDaAhHQKecJn7Hhjx1fZQoaAZHQJU1FDfFaStoB03oA2gIR0CnnjbayrxRdX2UKGgGR0CUq/mTkhicaAdN6ANoCEdAp6AlIwudw3V9lChoBkdAlL1hDkU9IWgHTegDaAhHQKeifHo5ggJ1fZQoaAZHQJUacGW2PT5oB03oA2gIR0CnpnXYtg8bdX2UKGgGR0CY15E0zj3maAdN6ANoCEdAp6iBH3Dej3V9lChoBkdAk91PllsguGgHTegDaAhHQKeqbrB0p3J1fZQoaAZHQJdfCs4ku6FoB03oA2gIR0CnrMmvGIbgdX2UKGgGR0CS+sKr7wazaAdN6ANoCEdAp7C7Ms6JZXV9lChoBkdAmD2UfLcKxGgHTegDaAhHQKey0mMwUQF1fZQoaAZHQJbi70XgtOFoB03oA2gIR0CntL4BeXzEdX2UKGgGR0COpXV6u4gBaAdN6ANoCEdAp7cefmLcbnVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b79edba2d36d8a8d360e82f2652ef14af2c867890e98e9d3e8aa0a745873a9fb
3
+ size 56126
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7f7b16109017d34ff6d810d03fd876b675857c1b74e851a8e0d7a4bf23b90edf
3
+ size 56894
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-4.19.0-041900-generic-x86_64-with-debian-buster-sid # 201810221809 SMP Mon Oct 22 22:11:45 UTC 2018
2
+ - Python: 3.7.13
3
+ - Stable-Baselines3: 1.8.0a2
4
+ - PyTorch: 1.12.1
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.5
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7cb0144320>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7cb01443b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7cb0144440>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7cb01444d0>", "_build": "<function ActorCriticPolicy._build at 0x7f7cb0144560>", "forward": "<function ActorCriticPolicy.forward at 0x7f7cb01445f0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f7cb0144680>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7cb0144710>", "_predict": "<function ActorCriticPolicy._predict at 0x7f7cb01447a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7cb0144830>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7cb01448c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7cb0144950>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f7cb018eae0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWV7gwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpRoMIwFc3RhdGWUfZQojANrZXmUaBIolsAJAAAAAAAAX72URNWqY4/fmoBp6zv9Z0ge7oTLDonSU+8yODQTiosYug49wgGfIlFppb0d7KnQqzgjplFxDKa+1S2pCRQ6FhSRwbCtlztIx5kRTKbrQs/zIGPHq9B1WZv8QTaithz/ayIPA0J03upvWWTCmZHPert1x2hEYoyViDseG9QUquwNCvZUPWDY0qhcXZ/bXgxr9jXcYPM+C3HNjSlh9czWvst3JOPwoV2aWr/L4WJrRCZcvt4Zjo5JXKQ4d/BbW+iJYvDFND6lw4KmY9Uo8LQdEEjkpVx3QB4fH8sJmQf+SNy3W2Zl8TrsjBOqMzQXP1WV5w2ygp3PawT/yPAeYEwUaFXAMUtMPEg9LHpagaJAVVM3cNN7Zxuc6EHXiC9SbZWRqnD98OtOGTSYi/EXcbSUbV689tHC0ruvktE7mqKaD1NyVCw6lYWwINVpuYhbZ0+8jhearcSwQluI7Er3qwt0atuGvp9sG/tc2wJQ24TGEGg+CMq6OmjkzN+lLY3dn0RQWDbOrXB04ixlsDHw8VtjhrCDGPMxUNQi0fHIcJ9SPMHAINHmQRRF/XnnSyHt4KPvoqKpxrJ8W9nBuDFwb465V0GDkLgpUFAZIip1ugE0YtShBISuky8aD0/Muc4jIIM20t1AJ3evUBPGm+rnbY1HP1hz0TuONLXISOMJLQwn03bviCg4mBg5jRPcOYhl8omTSumDUA5WxXnH8WmtVGtq92uGIsdjibABN7Jf+jSXHoRJoWUaDrp9CBoM+cR/ey2bpfWWgNgxLJfGkhNDKeyS7XLF2SG1Rg7pCa4m3Y42RfrzRFBq1a/MKJhl434VT8KoRPE+b4BW8F5KfsQURW9eKYJABfa7nfpH3rbXCzzqeley0Ef+tvCm0FzxrW/ePMPoIlDVXlWaViDzeGPNyxhMO5LAZM6N04/mUQ2FFQF+D5CXfWyBHEyPFk04LoXFJWQY3hvGq2f1pSwy3i3Kp7knQVCmoDO7J5NXSRSSBDusMB9uUE9HhB3JzYkAOTmb3Cp/8uts5VxyE/GLr0Sf5OjyeRtmwM7Ut4YlZi5E0V+gc6viRSQKXfNIFLG4vo4scKalpbvOqTqpSGU9w6XJWCjVFgxUwZFirq676I13NL7fVY53AfthtKWDpsR1PpA466dS4vg+UcZpwsFv76M+Zzj7BD7QEVobwqOxpubB1bwfoi/WqyME1MiF0sCRjhzZBHfV4A0egAbElte1YzjBxU207qEEUD+HJyWdr5d9NsZECOWJxOd+qKR6gZdQb791C9MaNUavY2jyQODpsM+P7c/nUqbpgLIsPEFSYj75zUg1Mcj5ggCIxngvc7FL7q/HLU7AGX0o8+f60/IMjiHlJnjrO70Q8oaq/wU3Ggqh8ZAnWwU/JXmFh9ISPqbvdbgYwjgvHDVucQPRjf6DmvxI/5Sa8XKz5p2VbqJgIDlItgI0zIvh+TEFMYd8a2K6q8tJYeWq6h0O86oh0CcSGDQxyZaBKj2dvGYAQNunJSGDUQmVPu49/cNX/TRo3P2/BTY8g6IwItfaten0QY1MTlwNuHW78SyHESajWgYA868+a3wsH3nuE0eQmcDZkbLWTxU/Y4MF9nN5v1fqEdhLT/40f3lwhIocHHEPiAXHFpbNGNO8VgLsXg8AcdDla97mHBab8/G2ViPHGhGm1QzdCPfnGPyxYJZTYlwspO+tB5qo+coWC54R59Y6ZmrNUGx4CVL8MH6pO0Tz8qli+McyV7TZHrbaWCW/7rpSHX0Qmdap/jMZQnMf906jDlUiRA18BFWwVmAusghdA+a5hPkuuB05YolRVi9HJJ/dcK/63tLIXR0BVJnUItjyfs4tW8KQIrRD3B/M3czdTA6NjGn7RewQWQ0tUL0Fv/MWhtys3g8N6qIEzj4Kz2mPZFanxp9b76Gl4f5ADOv7LXVdMCtAnNHgLPDbnB6JggESsy3oWmccegRPH2VN1N+U5oPMPBAWIofW2+5SThuR33c+2/aJx+H9YQ4x19Nu1RetCK8e8nE7weGi7xLP4xVmYyqAPvuqLHKw74aAaFoNgXCiW2jZuLXuxEAIH/RFJvbH5FrA/NySa1m9sZ5P1Ji6M087LBmg2hudMzMxDWwpIkuvhVP/tww1JOTUMTFUFDz18GlxAM3fyHr1WY9AYjG3nlAOdqhyUTbFdCgx5qI8iZL5CvhCKgdm8hFhBY39ZLpCZQLQQqqHQ96XGasqq18iCf1wYmcUhndjHLESFwlWeoSXHwn/8RLgidZVS6Rwk9YyM1Nne+WCxSzGlA/UlLFBHbW6OOs4FVkLJwZg5xv49CDdQUMzF4JiPVducirrTE4t++6GFrBi91HiZUHOv9CQBtHyYDWT+wKVRcB8+3slkgzSHoEqtDjPZb4YPcCm04ntrhn0kfw+NEEdQmITLqXR+EWYQL7MT2tkjvaMRrY/Za+ZR/0dHZrFBJtyYNOR9kp2mex/08ToIgA9UOaPD2VScjHsbeoowKS5C9EF0I9pB0A/o35Zmd6o6Yjaa1pWcs6Rg9YdzIxgAJBob38E1NWIqU2ZiiDkhmdeLI9Irzx72NAEBxinv6Ww903H8P/KARjpzLAkQFHsQmBfeGLXeNVZuZWhFXIA6inknA+gjSeNSXAkGa9DxkwozaMFU1XWdid2l3u2Tq2/TkLr/lYWuPqNHPvVLt/fWFfkKTLu2oSpPaow73kMEe1uWOqHVaSxaT/mqTgpXxnfY/Yx3wDfq1STdvVokQk26bgNyhoRb5BxskeM+FRub2guU8T7VFpTYb6PvD2c6tDMv6E8YvPJOUI9CBfnHBYT1ULNn+YJzAuEVYWxv5nvaJ/eGaF7fmpDkDLKaPg5PkU2/r3hkXUSHmMNiZ1JKP5IgYj53ZaiJ+51ZJ6QkdYyw50vrfytqWEWp6rdKR/DhkBdDLMyPtXgLYezJknn+HDG8/1C9TCrRFjh7S7d0GqwyrgAcUKak/G4MM0KDoEaYf7vwLgYfYOUajIXl5T1Kz01bMSBJWNBya1oEFbO72U68H7gwOoFRHDjkSYQbywzT5wWvjFrAPAlLw2o/tYyN8m4XRNjbPd/nAVcGzQrwLgXrBnCroerLT3SnVXwUuY1V1utderIBwK6hNUNHC0fm8RIFqgoM8EDy9PWAP0H6AehK10gOuyMVmdp5j4ZIN9xUSGpppCLqU+ZR7UZ3OJz4tEo1lTrVr9KikQC25Tnla1tg0RrkuS81sjuRZWi5KhE4IfFCNQ6wWQsMUKOXsOSpmA9Z7UTHx/CSr3aniLQY7FflqL/IS99GSKGcrgftAQuQuT7roUUXbXyQR7kbDgHC1Gl35V9gmuZlGgHjAJ1NJSJiIeUUpQoSwNoC05OTkr/////Sv////9LAHSUYk1wAoWUaBV0lFKUjANwb3OUS0B1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": "RandomState(MT19937)"}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVJgwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaDCMBXN0YXRllH2UKIwDa2V5lGgSKJbACQAAAAAAAMji+n69u0Fes6ibuN6BLciDnxBMAHfOVABJtOWMlOTy6oCk9yE31GHUufJmKGsZc3LrVwLUyA5E5uDJ90v50dfGGAE0ZJz2Ov7OX45wcmph55Lp5Fxlr1pArQKxtRbiRFztki6JAjDZMhZdy7fl7RVd5KU5ZNYfiX+NlgyP0093fpmpl2eaahbox+Pl9F5+QCTmxezWwkooQ+LFvwQfxiismhRGRKi9YWGe/jwozj3MXfcoYYToPaCM+BTA46hBtWkW7ioiMmMccFqH4RBrqIjGVxKl0F3ZkzfgVHkg9g9nnMbcgN9+o0nhsyVsmT/XPfV6EgkV0H9u7Mfl010QUW4OjFShu+5T+hUpvlUqX9H2/ZzEF1eZSR9DH+bIOyjLWRRUkt6PSxYC+BPauC73FFcku/ZA0u95O6omaDyF2fm0OdzLDPhuJcdJu48gHJnAsYbf7s59GpbzUqCVtdNcYfxtzsUGcKV1PNEzjLQxtM+AvsNQw8kWT3wdHwNa16nMYa851tqCH84027rXppSnZwwbtM9YOKjeWFuCJJ3T/mmV7RE5QzMlKkRIn5xslbAkodaj5BfWAb1qCEDEJxnwJYz6W3u9Kjnu/9NM39QJO2lofGTlnt9FPQ3th9O01OZOVsx5x2mIwD6dqOaTDUYYYUdhL377Xam9fTY/nKVcOozuoxQmFYMaebuUc+soDahOMAA4VZBdJ57OI8/050XAXx52eBzASZYeyF6oTWTUCDDYGhN2/GMlDOr/qb+lw3Cc0Ebm1JpSbYG1lcZ6JdJkWuwWNI6ENZuJiiEphEtbfZs2m6TIjQMhqxOPMeeGR7ewC6eoaF2wT47boAF97RNHGz/9t409PsQ5al0nM9c1mmnyn2kITPy9AYtlKRaLBTqn089eQ85C+93xQrQCHjMJ31RmRyZfmENmK38Ssv5KMWsCP6esUf0+neKCG0uEMSCLDoY6RgObxfuuN5EQ9gfLJfLFOdeJKus+30u5wR1GocnQfaAdUSeu0w1yiiKxXZhwEciBf1faR1/GE2RB9sdoCxJuBcWvkjDZM04HQA0UuPZbyNpULQo3+9yu815m13d9+k6mjF2jPJ61qdl2BQ/Hd2BpOvW/xMOifx+IDirkI4PK979mIYpt4x5Uu7dj8LVH00pVdMdpok9FXiZLPPR7WFJJhTxOe/oytRxLBc2RCMjrQvM/oMYJ2GU3twyz/6qQ2Lqyhhmw/jD8iZ5aXfyPmhmvq8IZ0ZYG3NdOVjnSvn0B8iI6TrA4Fjt/cx70Is7IM9YyUATCNhuKr+CU0QhG6PKFd8Jv4Q8Lgu7yQGSDWviNqapgSau7dSWBKVaO0ZX3DsLs2KW8MQiwHsFtDr0Ek2fl5sI98P1Z58f4okIfiBmpnGR2QGvAIVFy4VxY/uoSepC8xlf7rgFZnxiv+49LT9BeDVuYw3nZ+dMHufwCUEzo0kRORR1xjSQYt9jZRwlmcInmJEi1QLjfcnjPaKinMzKWP4Y4Jucfn23YBBAE+K9FGp0ed/naWTD0BczKYWzkl9tToySztd8Z+70UMt9yhAMZ+3XC799l+l36Lq5emZp0SqSFaM83IgTsmID4swKCMSmFiA+XdpC0HDQgpw+1h9W4X1uDam3HrfFfWCct1uOqEQ6HU7k1C8KA1F4GLeFfcRPA+YJvlJ+x9fYew/7jxpKWU7IshLCdRwg8D9f22cwpM7ZB31LR8V+9VibFvjZxOusKk65JLiEIWPVEqphSnFybNQ0M69mhLOj/g9mmPLIpms5In6/4zEHNOSElzr3y6TBYLlb/7dqwGbniENmywzoFxxo3F7L6dTAjfLTCeV1w39R/wrHnvWwYhaUxoKdDfB6Mn6vnQTeTmLJhM0ztc3tD0Mx/kNInHnVeUc1/sa1wz8hmqfSDHXvpn7JJD5fajHQt7iPPO6Um2xvUgakRtBbHVTamXnFmN0YkFsjOYlELgXHWdY8kogk+GiaRw35MBOq7WgzZufPtxKu4hYEP21YovI62bdo3N6N3/JNT3jKs/mYDcRLxCA7eV/Vsh4rpA1ZfJvegx9fLeJjZJQtWNoWsMTaiai41+kpLm1k4avHx90eJmXA1G8ngoRr6pwVkWgx3Bvy84EeMd2byNTDGvmsfph24hQW7AYQnt1qC6xzAT7GVAWycqUoFB0Mq24xjK4oIt0ixKSuybcPfUFnefLQ0YtSuVyM1BMvjCJItwiEeBBt3E/gvX5NPOe/80PaLfYEv0XEQStmmIWbPDQiZsP/mgnY68bvi7P2n4/XYT6fDUOjLrgGfZjQfxcn3AftOI214XyOJo4m9uqiQmucLxQvjmjBI/bJGCHRtP17+mLWFL88kfmKM8NlI+rJ+kHw59WYUTEJYI2DMxsxaO+Z+mF7hYYwnYvVn1/Z0PUR9Sh6LJDKj3c76YT5+gRNuNhHN7MkL5ni3b6ciYDIvisuTUGwluSYA8oxnc0S6+fSyc5YGuamowC1iwGuwh9RvlFxkXtk/Be4SH31IHs2x/3iNjWmzLK70iOEdnpKnMI5KbSsgS7YoGd3VJ70VU/2mOidOII14Jxql4bpuF6pIKhHvkoLNqXJBccbuJ5ltTYa3W4DcRyJYwbqVH0JncinCFDpV6oPqIIJ62vbW4tkx1aNc0PQlwIqfCZHwKxfOV1G7tfreTb3loJ5eSoPhspJavONpNrE0VOrCducea6CE891hqzCpvzYDVEDCkTVxZmMTYf00mRxgsBKIiBPZA7Plvb0FoKbgHUeqT/nCWZQNzi3tD6wFj+E5L7ZnHqICizR7/ZkSUbX2X7r0t8k7cihMiBdPXW5mvVX58EZKcNcy3PV8XdGaAnciNcPJxk1L0WeozEWj4pXkIB8UdfRG+USqaj5RaBxFAiWOzDf+mqU/CLgKLyS7YsBiDweKsLs4x1Zz2WvrKH0NYmzweubTERBxph17NpFLt6MVstTQhv/LNfZC2XGEKMU7mSv76TSwGVLQ/ZS3Q5BOC1AKjTAXMFn6MsyesrPphFPOFgl1whbTY4EhJRMPDM0f2rorD77yu1OoUP7XRJU5iAfNT4xeoyEGoAdXGdc9Al9bI26jhy9CP6a9+8+PbCku04Q+9X7EkjAiVvlZS2PPhyU9/bS6ssPyj55wNVjPzZkFOyBH6Wa86MDbHe8vNvSihnWjqOhnlcYu4KtFCshB2aCAF//OOa3bq+1mynFRYQZca/UYkkpF0CPgTYmvqvB4ber7jHyB2ywavbX3+8s1Dv+CfJH/xgUDYUu9/deDMsPst0ae0jVS+We1L11k8SprGy6paXu2euwKWnozgYvvyrGujCLZKDuqaAZ7w5RoB4wCdTSUiYiHlFKUKEsDaAtOTk5K/////0r/////SwB0lGJNcAKFlGgVdJRSlIwDcG9zlEsQdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YnViLg==", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": "RandomState(MT19937)"}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675407097863897022, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAI+Goj5b2WM9qP+2wIbYxb1EkS6/MyX/Pj3Z3b+KnPw9222avi5hQj6eJ9W+9TugPSEp/T+j5+U+XywWP245hL7WpIa/2NwAvyOql79SQd4+/jkTQIIenztCPWC/SGpqvOyqQz+M380+4qsIP+T1dL8XjKe+67WNv0WJ076ijVe+CvmTv8fUUD61l7a/PsUbP0cahL+5DDk/9lEbv3KIyT64WRpAdUYQvbV3fD6rLME/KP2VP7hWRT8aqnC/foN/wCzvID/uy94/YXeLP44BsD7sqkM/jN/NPuzB77+8xIU/N3ppPyt2yj8bcG0+hRlRPy8+ub81A9G/R39Bv6OOyb8NECC+8kjYPrq00L1d/yjAhQg6v4CgC0Ba0wU/VfFnv9PG/D4pwUNAjOM2Py8kJDwgn0G/PPycPhR0hD+geUhAtnenv4zfzT7swe+/5PV0vz7Qaz/KmPe9YFkCP7Oz+D+ot6o/9dciP5EkDj8obADADyMMP+tfXj+IsLC+OGmCP0zgLj8a86s/Y84fP6hX2b3LO1s/5v7ZPNmgwj70J3g/5QJLvyxUiTlO2ds/qoTcv7Z3p7+M380+4qsIP+T1dL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAPGSM1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAei5fNwAAAABDz+y/AAAAAG3Z1T0AAAAA3k7cPwAAAACrKdG9AAAAANUd7j8AAAAA5LK4vAAAAADvbu2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2MOWNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgFTcAb4AAAAAlr/kvwAAAAAiI6g9AAAAAE9u4z8AAAAAI+fSvQAAAADeuwBAAAAAAJt3sr0AAAAAi1X4vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJlMDzYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBzPBO9AAAAANRM278AAAAAOKUBvAAAAADqcv8/AAAAAAReI70AAAAAfkjwPwAAAAAmetm9AAAAAM2r3L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACqwxA2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAkEFCPQAAAADRHd2/AAAAAMC+dr0AAAAALJHiPwAAAADmgsQ9AAAAACAb+T8AAAAAvWjhvQAAAADKAt2/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJnwW7BfrryMAWyUTegDjAF0lEdAprhTnkkrw3V9lChoBkdAmm2noX9BKWgHTegDaAhHQKa6aUpuuRt1fZQoaAZHQJecAI8hcJNoB03oA2gIR0CmvrUe2d/bdX2UKGgGR0CXaXT8YQ8PaAdN6ANoCEdApsFj04BFNXV9lChoBkdAmcE7fUF0P2gHTegDaAhHQKbCqSteUpx1fZQoaAZHQJnbj0cwQDpoB03oA2gIR0CmxLP7WNFSdX2UKGgGR0CW1nAGSpzcaAdN6ANoCEdApskCMzdk8XV9lChoBkdAmZXc50bLlmgHTegDaAhHQKbLyqEvkBF1fZQoaAZHQJY+gXrMTvloB03oA2gIR0CmzRBRyfcvdX2UKGgGR0CZHO6N2ki2aAdN6ANoCEdAps8hdUsFuHV9lChoBkdAmDWRKYiPhmgHTegDaAhHQKbTgxgy/K11fZQoaAZHQJjohpmEoORoB03oA2gIR0Cm1jpmNBGAdX2UKGgGR0CZeSGoaUA1aAdN6ANoCEdAptd854nndXV9lChoBkdAllf4fCAMD2gHTegDaAhHQKbZljuKGcp1fZQoaAZHQJb7RJHy3CtoB03oA2gIR0Cm3fIAGSpzdX2UKGgGR0CakdbgCOm0aAdN6ANoCEdApuCwSteUp3V9lChoBkdAmaNZMpPRA2gHTegDaAhHQKbh9TSb6P91fZQoaAZHQJg2+JVKf4BoB03oA2gIR0Cm5ATGYKIBdX2UKGgGR0CakW3DNyHVaAdN6ANoCEdApuhZR/EwWXV9lChoBkdAl1vimEXcg2gHTegDaAhHQKbrEF0PpY91fZQoaAZHQJZycKUmlZZoB03oA2gIR0Cm7Fim/FisdX2UKGgGR0CYIOMnJDE4aAdN6ANoCEdApu5oJRfnfXV9lChoBkdAmGIlbFCLM2gHTegDaAhHQKbyyR2bG3p1fZQoaAZHQJvzgGQjlgdoB03oA2gIR0Cm9YdZid8RdX2UKGgGR0CcJ8OiFj/daAdN6ANoCEdApvbPZf2K23V9lChoBkdAmPisa0hNd2gHTegDaAhHQKb46sU7CBR1fZQoaAZHQJb0qxX4j8loB03oA2gIR0Cm/U/n4fwJdX2UKGgGR0CWYW4sVclgaAdN6ANoCEdApwAE4T9KmXV9lChoBkdAmpd6dUbT+mgHTegDaAhHQKcBSxFAmiR1fZQoaAZHQJeZ38R+SbJoB03oA2gIR0CnA1x6OYICdX2UKGgGR0CU86yLQ5WBaAdN6ANoCEdApwerZFocrHV9lChoBkdAmXNThLoOhGgHTegDaAhHQKcKYhcqvvB1fZQoaAZHQJc0DHCGetloB03oA2gIR0CnC6nVoYeldX2UKGgGR0CZDluPFNtZaAdN6ANoCEdApw25YigTRXV9lChoBkdAnF8hv3rUsmgHTegDaAhHQKcSCKMNtqJ1fZQoaAZHQJlwo3sHB1toB03oA2gIR0CnFMgnMMZxdX2UKGgGR0CW97yT6i0waAdN6ANoCEdApxYMIzFdcHV9lChoBkdAmpnwB91EE2gHTegDaAhHQKcYF8VHnU51fZQoaAZHQJo/4GJN0vJoB03oA2gIR0CnHFi4SYgJdX2UKGgGR0CbJMhFEy+IaAdN6ANoCEdApx8Mnb7CSHV9lChoBkdAm8so1+AmRmgHTegDaAhHQKcgXRAKOT91fZQoaAZHQJdbQ9LYf4hoB03oA2gIR0CnInUaAFxGdX2UKGgGR0CaeraK1og3aAdN6ANoCEdApya9f/m1Y3V9lChoBkdAmBp9diUgS2gHTegDaAhHQKcpajqv/zd1fZQoaAZHQJmQm2Zy+6BoB03oA2gIR0CnKq2b5M11dX2UKGgGR0CcK8D1XeWOaAdN6ANoCEdApyzJNTLntHV9lChoBkdAl9tnzH0btWgHTegDaAhHQKcxLGo73f11fZQoaAZHQJwQuiO/+KloB03oA2gIR0CnM+BCMPz4dX2UKGgGR0CY8BBxxT86aAdN6ANoCEdApzUllsguAnV9lChoBkdAmtqQUQCjlGgHTegDaAhHQKc3NuGbkOt1fZQoaAZHQIVeU1hsqKBoB03oA2gIR0CnO4N/4IrwdX2UKGgGR0CbmLudf9gnaAdN6ANoCEdApz4xkXk5qHV9lChoBkdAmJ/yCJ40M2gHTegDaAhHQKc/dLpRoAZ1fZQoaAZHQJn5IYsNDtxoB03oA2gIR0CnQX9ZJTVEdX2UKGgGR0CY/bxagVXWaAdN6ANoCEdAp0XIJu2qk3V9lChoBkdAm6nGozeoDWgHTegDaAhHQKdIeiaAnUl1fZQoaAZHQJgiyI9C/oJoB03oA2gIR0CnScKMWGh3dX2UKGgGR0CX8aaTwDvFaAdN6ANoCEdAp0vOTTvy9XV9lChoBkdAmjRGyPdVN2gHTegDaAhHQKdQCl+mWMV1fZQoaAZHQJdVJtGd7OVoB03oA2gIR0CnUr5LqUu+dX2UKGgGR0CUfjiZv1lHaAdN6ANoCEdAp1QA2fkFOnV9lChoBkdAlLbu0b961WgHTegDaAhHQKdWDbh3qzJ1fZQoaAZHQJgOVPepGWloB03oA2gIR0CnWl8L8aXKdX2UKGgGR0CMMsjGDL8raAdN6ANoCEdAp10Z02cawXV9lChoBkdAk3vx5C4SYmgHTegDaAhHQKdeWkJKJ2t1fZQoaAZHQJpBtEc81XNoB03oA2gIR0CnYGMyad+YdX2UKGgGR0CajKYQrc0taAdN6ANoCEdAp2ShnUUfxXV9lChoBkdAmcykfcN6PmgHTegDaAhHQKdnW0mdAgR1fZQoaAZHQJjIgasIVudoB03oA2gIR0CnaKCPQv6CdX2UKGgGR0CYopzByjpLaAdN6ANoCEdAp2qnnU2DQXV9lChoBkdAm9jajesPrmgHTegDaAhHQKdu2lqrR0F1fZQoaAZHQJOvHn4fwJBoB03oA2gIR0CncYdMK1G9dX2UKGgGR0CZrAG3nZCfaAdN6ANoCEdAp3LGyu6mO3V9lChoBkdAk0rFqrR0EGgHTegDaAhHQKd00fbsWwh1fZQoaAZHQJffqMVDa5BoB03oA2gIR0CneR6N+9amdX2UKGgGR0CM8p+vyLAIaAdN6ANoCEdAp3vVpCa7VnV9lChoBkdAlc0wtnPE9GgHTegDaAhHQKd9He0G/vh1fZQoaAZHQJSPJfv4M4NoB03oA2gIR0CnfyXXqZ+hdX2UKGgGR0CXEEIqLCN0aAdN6ANoCEdAp4NhUT+NtXV9lChoBkdAlpY7rcCYC2gHTegDaAhHQKeGESidrft1fZQoaAZHQJZHvpB5X2doB03oA2gIR0Cnh13xnWaudX2UKGgGR0CWIiKWszVMaAdN6ANoCEdAp4l8DnvDxnV9lChoBkdAgvWZhScbzmgHTf4BaAhHQKeLePxx1gZ1fZQoaAZHQJRcranJkoZoB03oA2gIR0CnjdMmF8G+dX2UKGgGR0CXe5nb7CSBaAdN6ANoCEdAp5HNkxyn1nV9lChoBkdAmbhe+RHPNWgHTegDaAhHQKeT3mthd+p1fZQoaAZHQJba+Ixgy/NoB03oA2gIR0CnlcdBKL88dX2UKGgGR0CXxi93bEgoaAdN6ANoCEdAp5ghTyauwHV9lChoBkdAmGbB0ZFXrGgHTegDaAhHQKecJn7Hhjx1fZQoaAZHQJU1FDfFaStoB03oA2gIR0CnnjbayrxRdX2UKGgGR0CUq/mTkhicaAdN6ANoCEdAp6AlIwudw3V9lChoBkdAlL1hDkU9IWgHTegDaAhHQKeifHo5ggJ1fZQoaAZHQJUacGW2PT5oB03oA2gIR0CnpnXYtg8bdX2UKGgGR0CY15E0zj3maAdN6ANoCEdAp6iBH3Dej3V9lChoBkdAk91PllsguGgHTegDaAhHQKeqbrB0p3J1fZQoaAZHQJdfCs4ku6FoB03oA2gIR0CnrMmvGIbgdX2UKGgGR0CS+sKr7wazaAdN6ANoCEdAp7C7Ms6JZXV9lChoBkdAmD2UfLcKxGgHTegDaAhHQKey0mMwUQF1fZQoaAZHQJbi70XgtOFoB03oA2gIR0CntL4BeXzEdX2UKGgGR0COpXV6u4gBaAdN6ANoCEdAp7cefmLcbnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-4.19.0-041900-generic-x86_64-with-debian-buster-sid # 201810221809 SMP Mon Oct 22 22:11:45 UTC 2018", "Python": "3.7.13", "Stable-Baselines3": "1.8.0a2", "PyTorch": "1.12.1", "GPU Enabled": "True", "Numpy": "1.21.5", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f57f9c50de959a8aed05fdd76c3ad659a33574dddaba79dc56de35a5b4475e70
3
+ size 1141983
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1155.6051183739824, "std_reward": 529.3933227458905, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-03T07:50:23.105088"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:36407e29a46e1f15726a96eaad1175fb12884877953c6627a701b74845a767ba
3
+ size 2371