File size: 1,623 Bytes
a9b6574 0e06faa a9b6574 55d1365 d91889b ba5b860 30cb4b4 2607e5b af96d53 ba5b860 af96d53 5654397 ba5b860 af96d53 45f66c3 af96d53 ba5b860 35640a5 af96d53 35640a5 7119d76 35640a5 7119d76 5654397 7119d76 35640a5 ba5b860 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
---
license: mit
---
<strong>Classifier of opinion conveyed by vaccine-related content in Italian language</strong></br>
A monolingual model for classifying the opinion conveyed through vaccine-related content in Italian language. The model was trained on 36,722 and independently tested on 9,299 social media content between Facebook posts, Twitter tweets, Instagram media and YouTube videos. It is a fine-tuned version of bert-base-multilingual-cased.
<strong>Model output</strong></br>
The model classifies each input into one of three distinct classes:</br>
<ul>
<li>Anti-vax</li>
<li>Neutral</li>
<li>Pro-vax</li>
</ul>
<strong>Citation info and BibTeX entries</strong></br>
<a href="https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0316258" target="_blank">Dynamics and triggers of misinformation on vaccines</a>
```bibtex
@article{Bru2025,
title={Dynamics and triggers of misinformation on vaccines},
author={Brugnoli, Emanuele and Delmastro, Marco},
journal={PLOS ONE},
year={2025},
volume={20},
number={1},
pages={e0316258},
doi={10.1371/journal.pone.0316258}
}
```
<a href="https://academic.oup.com/pnasnexus/article/3/11/pgae474/7831539" target="_blank">Unveiling the Hidden Agenda: Biases in News Reporting and Consumption</a>
```bibtex
@article{,
title={Unveiling the Hidden Agenda: Biases in News Reporting and Consumption},
author={Galeazzi, Alessandro and Peruzzi, Antonio and Brugnoli, Emanuele and Delmastro, Marco and Zollo, Fabiana},
journal={PNAS NEXUS},
year={2024},
volume={3},
number={11},
pages={pgae474},
doi={10.1093/pnasnexus/pgae474}
}
``` |