File size: 1,623 Bytes
a9b6574
0e06faa
a9b6574
55d1365
 
 
 
 
d91889b
 
 
 
ba5b860
 
30cb4b4
2607e5b
af96d53
ba5b860
 
af96d53
5654397
ba5b860
af96d53
45f66c3
af96d53
 
 
 
ba5b860
35640a5
 
af96d53
35640a5
 
7119d76
35640a5
 
7119d76
5654397
7119d76
 
 
 
35640a5
ba5b860
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
---
license: mit
---
<strong>Classifier of opinion conveyed by vaccine-related content in Italian language</strong></br>
A monolingual model for classifying the opinion conveyed through vaccine-related content in Italian language. The model was trained on 36,722 and independently tested on 9,299 social media content between Facebook posts, Twitter tweets, Instagram media and YouTube videos. It is a fine-tuned version of bert-base-multilingual-cased.

<strong>Model output</strong></br>
The model classifies each input into one of three distinct classes:</br>
<ul>
<li>Anti-vax</li>
<li>Neutral</li>
<li>Pro-vax</li>
</ul>

<strong>Citation info and BibTeX entries</strong></br>

<a href="https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0316258" target="_blank">Dynamics and triggers of misinformation on vaccines</a>

```bibtex
@article{Bru2025,
  title={Dynamics and triggers of misinformation on vaccines},
  author={Brugnoli, Emanuele and Delmastro, Marco},
  journal={PLOS ONE},
  year={2025},
  volume={20},
  number={1},
  pages={e0316258},
  doi={10.1371/journal.pone.0316258}
}
```

<a href="https://academic.oup.com/pnasnexus/article/3/11/pgae474/7831539" target="_blank">Unveiling the Hidden Agenda: Biases in News Reporting and Consumption</a>

```bibtex
@article{,
  title={Unveiling the Hidden Agenda: Biases in News Reporting and Consumption},
  author={Galeazzi, Alessandro and Peruzzi, Antonio and Brugnoli, Emanuele and Delmastro, Marco and Zollo, Fabiana},
  journal={PNAS NEXUS},
  year={2024},
  volume={3},
  number={11},
  pages={pgae474},
  doi={10.1093/pnasnexus/pgae474}
}
```