{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f23b6072100>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685976934075626075, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAK3XRz7gGkg/uawVveLmnr5vs9o8yoO5vAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHBajjvNNaiMAWyUTZUBjAF0lEdAo3/pVGTcI3V9lChoBkdAbrhuCPIXCWgHTSUCaAhHQKOCJSvTw2F1fZQoaAZHQG6zZ1mrbQFoB00TAmgIR0CjhQZqVQhwdX2UKGgGR0BvecE7nxJ/aAdNzwFoCEdAo4atjgAIY3V9lChoBkdAcQpAY51eSmgHTYQBaAhHQKOIpBIFvAJ1fZQoaAZHQGpQ4YrJ8v5oB03DAWgIR0Cjit7ItDlYdX2UKGgGR0BxZvDk2gnMaAdNJwJoCEdAo48bKcNH6XV9lChoBkdAbnH++dsi0WgHTWkBaAhHQKORIqI7/4t1fZQoaAZHQG7Xfcer+5xoB025AWgIR0CjlAUCA+Y/dX2UKGgGR8BAezwMH8jzaAdNWQFoCEdAo5VdkFwDNnV9lChoBkdAbw5U5MlC1WgHTW8BaAhHQKOW01zhgmZ1fZQoaAZHQG+qNl7MPjJoB01TAWgIR0CjmKAhbGFSdX2UKGgGR0BZaf+OwPiDaAdN6ANoCEdAo52EB2fTTnV9lChoBkdAcD2zGgi/wmgHTYQBaAhHQKOfAIa99MN1fZQoaAZHQG435Oi35N5oB01kAWgIR0CjoFxfnfVJdX2UKGgGR0BxMIegctGvaAdNmAFoCEdAo6Jt9nbqQnV9lChoBkdAarss6JZW72gHTZoBaAhHQKOkGLvTgEV1fZQoaAZHQG7t7m+0w8JoB01UAWgIR0CjpWSDyvs7dX2UKGgGR0Bug3NmlImPaAdNSwFoCEdAo6c47eVLSXV9lChoBkdAcMJIKtxMnWgHTUEBaAhHQKOovbs4T9N1fZQoaAZHQHDiBjriVB5oB02SAWgIR0Cjqr8F6iTMdX2UKGgGR0Bw8s3Lmp2maAdNqgFoCEdAo63RvUBnz3V9lChoBkdAb8rPRiPQwGgHTZkBaAhHQKOwS5nUUfx1fZQoaAZHQHHQAggX/HZoB02vAWgIR0CjsnAydnTRdX2UKGgGR0BwpU2jwhGIaAdNoAFoCEdAo7QRUgjhUHV9lChoBkdAcc+pqynk1mgHTYYBaAhHQKO1eSfUWmB1fZQoaAZHQG4UAzpHI6toB01oAWgIR0Cjt22J79hrdX2UKGgGR0BswWKl54W2aAdNXAFoCEdAo7i4PoV2zXV9lChoBkdAcLK/4qPOp2gHTVwBaAhHQKO6ievpyIZ1fZQoaAZHQG44PicXm/5oB02hAmgIR0CjvZvO6d1/dX2UKGgGR0Bumc4aP0ZnaAdNYgFoCEdAo7921WsBAHV9lChoBkdAcMHdXDFZPmgHTVgBaAhHQKPAz8wYced1fZQoaAZHQG9KsqjJuEVoB01fAWgIR0Cjwh14oqkNdX2UKGgGR0Bw4GuDBdleaAdNXwFoCEdAo8P06JZW73V9lChoBkdAbrXeKsMiKWgHTZoBaAhHQKPF9sUqQRx1fZQoaAZHQHD8nYlIEr5oB02KAWgIR0Cjx+62F36idX2UKGgGR0BtkuS6lLvkaAdNawFoCEdAo8rutU4rBnV9lChoBkdAb/W3CsOoYWgHTaQBaAhHQKPNT6AvtdB1fZQoaAZHQG9lU1hsqKBoB01GAWgIR0Cjzp/h/Aj6dX2UKGgGR0BuP0VFhG6PaAdNcQFoCEdAo9CMSZjQRnV9lChoBkdAbzlT2nKnvWgHTVkBaAhHQKPR1jPv8ZV1fZQoaAZHQGyYQRPGhmJoB02WAWgIR0Cj02cL0BfbdX2UKGgGR0BxkBXyRSxaaAdNwAFoCEdAo9WrpA2Q4nV9lChoBkdAb1J/uLJjlWgHTTYBaAhHQKPWyA7xNIt1fZQoaAZHQHDb2Vu76HloB01HAWgIR0Cj2IIrWiDedX2UKGgGR0BwD0oVmBe5aAdNYwFoCEdAo9nEg4ffXXV9lChoBkdAb7IG+K0laGgHTVcBaAhHQKPbBz/ZM+N1fZQoaAZHQHINeEIw/PhoB01dAWgIR0Cj3NwXyiEhdX2UKGgGR0Bxr0VQAMlUaAdNZwFoCEdAo94vhbW3B3V9lChoBkdAcXA4qwyIpGgHTZIBaAhHQKPfrGIbfgt1fZQoaAZHQHBCUlNUOutoB01MAWgIR0Cj4WOjRD1HdX2UKGgGR0BsbQ1UEPlNaAdNbAFoCEdAo+Mcnw5NoXV9lChoBkdAck6MqBmPHWgHTXQBaAhHQKPk+XvYvnN1fZQoaAZHQHGW+mrKeTVoB02UAWgIR0Cj5+t2s7uEdX2UKGgGR0Bu/TYmLLpzaAdNcwFoCEdAo+nytPpIMHV9lChoBkdAcK/sKb8WK2gHTXUBaAhHQKPrsx9G7SR1fZQoaAZHQG9pV/Ue+25oB012AWgIR0Cj7ZT0g8r7dX2UKGgGR0BwdhilSCOFaAdNswFoCEdAo+9PTd+G5HV9lChoBkdAUDJLpRoAXGgHTS8BaAhHQKPw56sQumJ1fZQoaAZHQHBJg5zYEntoB01mAWgIR0Cj8j4AsCkodX2UKGgGR0Bw2qQPqcEvaAdNXgFoCEdAo/OStHQQc3V9lChoBkdAb4WeeWfK6mgHTYwBaAhHQKP1q+lj3Eh1fZQoaAZHQGpim5+YtxxoB01hAWgIR0Cj9vuwgTysdX2UKGgGR0BqdTJuEVWTaAdNbAFoCEdAo/hygVXV9XV9lChoBkdAaR/60pmVaGgHTYUBaAhHQKP6kNR3u/l1fZQoaAZHQHD6TTa0x/NoB00nAWgIR0Cj+5Wf9P1tdX2UKGgGR0Bvzeq94/u9aAdNdQFoCEdAo/zz9VFQVXV9lChoBkdAcLU4SHuZ1GgHTXwBaAhHQKP+2qCHymR1fZQoaAZHQGqPUtyxRl9oB01QAWgIR0CkAIa8Hv+gdX2UKGgGR0BsHhR/EwWWaAdNaAFoCEdApAJD5bhWHXV9lChoBkdAcT+l+Vkc0mgHTZ8BaAhHQKQFVXyRSxZ1fZQoaAZHQHD8cDfWMCNoB013AWgIR0CkB5s6aLGadX2UKGgGR0Btt5cJMQEqaAdNiAFoCEdApAoWCXhOxnV9lChoBkdAcNyACW/rSmgHTYUBaAhHQKQLjLRrrPd1fZQoaAZHQGvwTuWrwORoB01iAWgIR0CkDO8BdUsGdX2UKGgGR0BvECFsYVIqaAdNWwFoCEdApA7mq94/vHV9lChoBkdAcSDwY+B6KWgHTTcBaAhHQKQQCV5a/yp1fZQoaAZHQHDSQiiZfD1oB010AWgIR0CkEXAg5imVdX2UKGgGR0BrsVxAB1cMaAdNYgFoCEdApBNZVdX1anV9lChoBkdAcZnX2dupCWgHTW4BaAhHQKQUoJPZZjh1fZQoaAZHQGuBgsCkoF5oB02FAWgIR0CkFiO6unuRdX2UKGgGR0BsYtLnLaEjaAdNaAFoCEdApBgWZuyeI3V9lChoBkdAcJrydWhh6WgHTVwBaAhHQKQZYwTM7lt1fZQoaAZHQHFAYpH7P6doB01uAWgIR0CkGrZnlGPQdX2UKGgGR0BxUenjyWiUaAdNYQFoCEdApBySaAnUlXV9lChoBkdAbGK5OJtSAGgHTUoBaAhHQKQeWNcW0qp1fZQoaAZHQHCHBISUTtdoB01lAWgIR0CkIAmlQ/HHdX2UKGgGR0BtQuhXbM5faAdNhQFoCEdApCMkibDuSnV9lChoBkdAbGqU34sVcmgHTWgBaAhHQKQlEM7U5Ml1fZQoaAZHQHArGCVbA1xoB00+AWgIR0CkJwpswco6dX2UKGgGR0Bey0OVgQYlaAdN6ANoCEdApCskSmIj4nV9lChoBke/+rVtoBaLXWgHS95oCEdApCxqI7/4qXV9lChoBkdAbdJXd0q6OGgHTVoBaAhHQKQttPTG5tp1fZQoaAZHQHBNZbUwztVoB018AWgIR0CkLxub7TDwdX2UKGgGR0BwPPmuDBdlaAdNZAFoCEdApDEPTodMkHV9lChoBkdAa5F05EMLGGgHTU4BaAhHQKQyP6uW8h91fZQoaAZHQGywJ9ZzPrxoB01tAWgIR0CkM6k+PikwdX2UKGgGR0BsbZxo7FKkaAdNSgFoCEdApDVtTBInSnV9lChoBkdAcaKDOkcjq2gHTU0BaAhHQKQ2nubZvk11fZQoaAZHQHDv8zAN5MVoB008AWgIR0CkN92Kl54XdWUu"}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "observation_space": {":type:": "", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}