Diffusers
File size: 26,151 Bytes
07373ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
# Copyright 2024 Stability AI and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Any, Callable, Dict, List, Optional, Union
import torch
from transformers import (
    T5EncoderModel,
    T5TokenizerFast,
)
from diffusers.image_processor import PipelineImageInput

from diffusers import AutoencoderKL  # Waiting for diffusers udpdate
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import logging
from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput
from diffusers.pipelines.flux.pipeline_flux import retrieve_timesteps
from controlnet_bria import BriaControlNetModel, BriaMultiControlNetModel

from pipeline_bria import BriaPipeline
from transformer_bria import BriaTransformer2DModel
from bria_utils import get_original_sigmas

XLA_AVAILABLE = False


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


class BriaControlNetPipeline(BriaPipeline):
    r"""
    Args:
        transformer ([`SD3Transformer2DModel`]):
            Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
        scheduler ([`FlowMatchEulerDiscreteScheduler`]):
            A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
        vae ([`AutoencoderKL`]):
            Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
        text_encoder ([`T5EncoderModel`]):
            Frozen text-encoder. Stable Diffusion 3 uses
            [T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the
            [t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
        tokenizer (`T5TokenizerFast`):
            Tokenizer of class
            [T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer).
    """

    model_cpu_offload_seq = "text_encoder->text_encoder_2->text_encoder->transformer->vae"
    _optional_components = []
    _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds", "negative_pooled_prompt_embeds"]

    def __init__(  # EYAL - removed clip text encoder + tokenizer
        self,
        transformer: BriaTransformer2DModel,
        scheduler: Union[FlowMatchEulerDiscreteScheduler, KarrasDiffusionSchedulers],
        vae: AutoencoderKL,
        text_encoder: T5EncoderModel,
        tokenizer: T5TokenizerFast,
        controlnet: BriaControlNetModel,
    ):
        super().__init__(
            transformer=transformer, scheduler=scheduler, vae=vae, text_encoder=text_encoder, tokenizer=tokenizer
        )
        self.register_modules(controlnet=controlnet)

    def prepare_image(
        self,
        image,
        width,
        height,
        batch_size,
        num_images_per_prompt,
        device,
        dtype,
        do_classifier_free_guidance=False,
        guess_mode=False,
    ):
        if isinstance(image, torch.Tensor):
            pass
        else:
            image = self.image_processor.preprocess(image, height=height, width=width)

        image_batch_size = image.shape[0]

        if image_batch_size == 1:
            repeat_by = batch_size
        else:
            # image batch size is the same as prompt batch size
            repeat_by = num_images_per_prompt

        image = image.repeat_interleave(repeat_by, dim=0)

        image = image.to(device=device, dtype=dtype)

        if do_classifier_free_guidance and not guess_mode:
            image = torch.cat([image] * 2)

        return image

    def prepare_control(self, control_image, width, height, batch_size, num_images_per_prompt, device, control_mode):
        num_channels_latents = self.transformer.config.in_channels // 4
        control_image = self.prepare_image(
            image=control_image,
            width=width,
            height=height,
            batch_size=batch_size * num_images_per_prompt,
            num_images_per_prompt=num_images_per_prompt,
            device=device,
            dtype=self.vae.dtype,
        )
        height, width = control_image.shape[-2:]

        # vae encode
        control_image = self.vae.encode(control_image).latent_dist.sample()
        control_image = (control_image - self.vae.config.shift_factor) * self.vae.config.scaling_factor

        # pack
        height_control_image, width_control_image = control_image.shape[2:]
        control_image = self._pack_latents(
            control_image,
            batch_size * num_images_per_prompt,
            num_channels_latents,
            height_control_image,
            width_control_image,
        )

        # Here we ensure that `control_mode` has the same length as the control_image.
        if control_mode is not None:
            if not isinstance(control_mode, int):
                raise ValueError(" For `BriaControlNet`, `control_mode` should be an `int` or `None`")
            control_mode = torch.tensor(control_mode).to(device, dtype=torch.long)
            control_mode = control_mode.view(-1, 1).expand(control_image.shape[0], 1)

        return control_image, control_mode

    def prepare_multi_control(self, control_image, width, height, batch_size, num_images_per_prompt, device, control_mode):
        num_channels_latents = self.transformer.config.in_channels // 4
        control_images = []
        for i, control_image_ in enumerate(control_image):
            control_image_ = self.prepare_image(
                image=control_image_,
                width=width,
                height=height,
                batch_size=batch_size * num_images_per_prompt,
                num_images_per_prompt=num_images_per_prompt,
                device=device,
                dtype=self.vae.dtype,
            )
            height, width = control_image_.shape[-2:]

            # vae encode
            control_image_ = self.vae.encode(control_image_).latent_dist.sample()
            control_image_ = (control_image_ - self.vae.config.shift_factor) * self.vae.config.scaling_factor

            # pack
            height_control_image, width_control_image = control_image_.shape[2:]
            control_image_ = self._pack_latents(
                control_image_,
                batch_size * num_images_per_prompt,
                num_channels_latents,
                height_control_image,
                width_control_image,
            )
            control_images.append(control_image_)

        control_image = control_images

        # Here we ensure that `control_mode` has the same length as the control_image.
        if isinstance(control_mode, list) and len(control_mode) != len(control_image):
            raise ValueError(
                "For Multi-ControlNet, `control_mode` must be a list of the same "
                + " length as the number of controlnets (control images) specified"
            )
        if not isinstance(control_mode, list):
            control_mode = [control_mode] * len(control_image)
        # set control mode
        control_modes = []
        for cmode in control_mode:
            if cmode is None:
                cmode = -1
            control_mode = torch.tensor(cmode).expand(control_images[0].shape[0]).to(device, dtype=torch.long)
            control_modes.append(control_mode)
        control_mode = control_modes

        return control_image, control_mode
    
    def get_controlnet_keep(self, timesteps, control_guidance_start, control_guidance_end):
        controlnet_keep = []
        for i in range(len(timesteps)):
            keeps = [
                1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
                for s, e in zip(control_guidance_start, control_guidance_end)
            ]
            controlnet_keep.append(keeps[0] if isinstance(self.controlnet, BriaControlNetModel) else keeps)
        return controlnet_keep

    def get_control_start_end(self, control_guidance_start, control_guidance_end):
        if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
            control_guidance_start = len(control_guidance_end) * [control_guidance_start]
        elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
            control_guidance_end = len(control_guidance_start) * [control_guidance_end]
        elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
            mult = 1  # TODO - why is this 1?
            control_guidance_start, control_guidance_end = (
                mult * [control_guidance_start],
                mult * [control_guidance_end],
            )

        return control_guidance_start, control_guidance_end

    @torch.no_grad()
    def __call__(
        self,
        prompt: Union[str, List[str]] = None,
        height: Optional[int] = None,
        width: Optional[int] = None,
        num_inference_steps: int = 30,
        timesteps: List[int] = None,
        guidance_scale: float = 3.5,
        control_guidance_start: Union[float, List[float]] = 0.0,
        control_guidance_end: Union[float, List[float]] = 1.0,
        control_image: Optional[PipelineImageInput] = None,
        control_mode: Optional[Union[int, List[int]]] = None,
        controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        num_images_per_prompt: Optional[int] = 1,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        latents: Optional[torch.FloatTensor] = None,
        prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        joint_attention_kwargs: Optional[Dict[str, Any]] = None,
        callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
        callback_on_step_end_tensor_inputs: List[str] = ["latents"],
        max_sequence_length: int = 128,
    ):
        r"""
        Function invoked when calling the pipeline for generation.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
                instead.
            height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
                The height in pixels of the generated image. This is set to 1024 by default for the best results.
            width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
                The width in pixels of the generated image. This is set to 1024 by default for the best results.
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            timesteps (`List[int]`, *optional*):
                Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
                in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
                passed will be used. Must be in descending order.
            guidance_scale (`float`, *optional*, defaults to 5.0):
                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
                `guidance_scale` is defined as `w` of equation 2. of [Imagen
                Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
                1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
                usually at the expense of lower image quality.
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. If not defined, one has to pass
                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
                less than `1`).
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
                One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
                to make generation deterministic.
            latents (`torch.FloatTensor`, *optional*):
                Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                tensor will ge generated by sampling using the supplied random `generator`.
            prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
            negative_prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
                argument.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generate image. Choose between
                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
                of a plain tuple.
            joint_attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
                `self.processor` in
                [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
            callback_on_step_end (`Callable`, *optional*):
                A function that calls at the end of each denoising steps during the inference. The function is called
                with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
                callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
                `callback_on_step_end_tensor_inputs`.
            callback_on_step_end_tensor_inputs (`List`, *optional*):
                The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
                will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
                `._callback_tensor_inputs` attribute of your pipeline class.
            max_sequence_length (`int` defaults to 256): Maximum sequence length to use with the `prompt`.

        Examples:

        Returns:
            [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] or `tuple`:
            [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a
            `tuple`. When returning a tuple, the first element is a list with the generated images.
        """

        height = height or self.default_sample_size * self.vae_scale_factor
        width = width or self.default_sample_size * self.vae_scale_factor
        control_guidance_start, control_guidance_end = self.get_control_start_end(
            control_guidance_start=control_guidance_start, control_guidance_end=control_guidance_end
        )

        # 1. Check inputs. Raise error if not correct
        self.check_inputs(
            prompt,
            height,
            width,
            negative_prompt=negative_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
            max_sequence_length=max_sequence_length,
        )

        self._guidance_scale = guidance_scale
        self._joint_attention_kwargs = joint_attention_kwargs
        self._interrupt = False

        # 2. Define call parameters
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        device = self._execution_device

        lora_scale = self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None

        (prompt_embeds, negative_prompt_embeds, text_ids) = self.encode_prompt(
            prompt=prompt,
            negative_prompt=negative_prompt,
            do_classifier_free_guidance=self.do_classifier_free_guidance,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            device=device,
            num_images_per_prompt=num_images_per_prompt,
            max_sequence_length=max_sequence_length,
            lora_scale=lora_scale,
        )

        if self.do_classifier_free_guidance:
            prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)

        # 3. Prepare control image
        if control_image is not None:
            if isinstance(self.controlnet, BriaControlNetModel):
                control_image, control_mode = self.prepare_control(
                    control_image=control_image,
                    width=width,
                    height=height,
                    batch_size=batch_size,
                    num_images_per_prompt=num_images_per_prompt,
                    device=device,
                    control_mode=control_mode,
                )
            elif isinstance(self.controlnet, BriaMultiControlNetModel):
                control_image, control_mode = self.prepare_multi_control(
                    control_image=control_image,
                    width=width,
                    height=height,
                    batch_size=batch_size,
                    num_images_per_prompt=num_images_per_prompt,
                    device=device,
                    control_mode=control_mode,
                )                

        # 4. Prepare timesteps
        # Sample from training sigmas
        sigmas = get_original_sigmas(
            num_train_timesteps=self.scheduler.config.num_train_timesteps, num_inference_steps=num_inference_steps
        )
        timesteps, num_inference_steps = retrieve_timesteps(
            self.scheduler, num_inference_steps, device, timesteps, sigmas=sigmas
        )
        num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
        self._num_timesteps = len(timesteps)

        # 5. Prepare latent variables
        num_channels_latents = self.transformer.config.in_channels // 4  # due to patch=2, we devide by 4
        latents, latent_image_ids = self.prepare_latents(
            batch_size=batch_size * num_images_per_prompt,
            num_channels_latents=num_channels_latents,
            height=height,
            width=width,
            dtype=prompt_embeds.dtype,
            device=device,
            generator=generator,
            latents=latents,
        )

        # 6. Create tensor stating which controlnets to keep
        if control_image is not None:
            controlnet_keep = self.get_controlnet_keep(
                timesteps=timesteps,
                control_guidance_start=control_guidance_start,
                control_guidance_end=control_guidance_end,
            )

        # EYAL - added the CFG loop
        # 7. Denoising loop
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                if self.interrupt:
                    continue

                # expand the latents if we are doing classifier free guidance
                latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
                # if type(self.scheduler) != FlowMatchEulerDiscreteScheduler:
                if not isinstance(self.scheduler, FlowMatchEulerDiscreteScheduler):
                    latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

                # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
                timestep = t.expand(latent_model_input.shape[0])

                # Handling ControlNet
                if control_image is not None:
                    if isinstance(controlnet_keep[i], list):
                        if isinstance(controlnet_conditioning_scale, list):
                            cond_scale = controlnet_conditioning_scale
                        else:
                            cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
                    else:
                        controlnet_cond_scale = controlnet_conditioning_scale
                        if isinstance(controlnet_cond_scale, list):
                            controlnet_cond_scale = controlnet_cond_scale[0]
                        cond_scale = controlnet_cond_scale * controlnet_keep[i]

                    # controlnet
                    controlnet_block_samples, controlnet_single_block_samples = self.controlnet(
                        hidden_states=latents,
                        controlnet_cond=control_image,
                        controlnet_mode=control_mode,
                        conditioning_scale=cond_scale,
                        timestep=timestep,
                        # guidance=guidance,
                        # pooled_projections=pooled_prompt_embeds,
                        encoder_hidden_states=prompt_embeds,
                        txt_ids=text_ids,
                        img_ids=latent_image_ids,
                        joint_attention_kwargs=self.joint_attention_kwargs,
                        return_dict=False,
                    )
                else:
                    controlnet_block_samples, controlnet_single_block_samples = None, None

                # This is predicts "v" from flow-matching
                noise_pred = self.transformer(
                    hidden_states=latent_model_input,
                    timestep=timestep,
                    encoder_hidden_states=prompt_embeds,
                    joint_attention_kwargs=self.joint_attention_kwargs,
                    return_dict=False,
                    txt_ids=text_ids,
                    img_ids=latent_image_ids,
                    controlnet_block_samples=controlnet_block_samples,
                    controlnet_single_block_samples=controlnet_single_block_samples,
                )[0]

                # perform guidance
                if self.do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)

                # compute the previous noisy sample x_t -> x_t-1
                latents_dtype = latents.dtype
                latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]

                if latents.dtype != latents_dtype:
                    if torch.backends.mps.is_available():
                        # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
                        latents = latents.to(latents_dtype)

                if callback_on_step_end is not None:
                    callback_kwargs = {}
                    for k in callback_on_step_end_tensor_inputs:
                        callback_kwargs[k] = locals()[k]
                    callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

                    latents = callback_outputs.pop("latents", latents)
                    prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
                    negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)

                # call the callback, if provided
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()

                if XLA_AVAILABLE:
                    xm.mark_step()

        if output_type == "latent":
            image = latents

        else:
            latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
            latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
            image = self.vae.decode(latents.to(dtype=self.vae.dtype), return_dict=False)[0]
            image = self.image_processor.postprocess(image, output_type=output_type)

        # Offload all models
        self.maybe_free_model_hooks()

        if not return_dict:
            return (image,)

        return FluxPipelineOutput(images=image)