|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Any, Callable, Dict, List, Optional, Union |
|
import torch |
|
from transformers import ( |
|
T5EncoderModel, |
|
T5TokenizerFast, |
|
) |
|
from diffusers.image_processor import PipelineImageInput |
|
|
|
from diffusers import AutoencoderKL |
|
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler |
|
from diffusers.schedulers import KarrasDiffusionSchedulers |
|
from diffusers.utils import logging |
|
from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput |
|
from diffusers.pipelines.flux.pipeline_flux import retrieve_timesteps |
|
from controlnet_bria import BriaControlNetModel, BriaMultiControlNetModel |
|
from pipeline_bria import BriaPipeline |
|
from transformer_bria import BriaTransformer2DModel |
|
from bria_utils import get_original_sigmas |
|
|
|
XLA_AVAILABLE = False |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class BriaControlNetPipeline(BriaPipeline): |
|
r""" |
|
Args: |
|
transformer ([`SD3Transformer2DModel`]): |
|
Conditional Transformer (MMDiT) architecture to denoise the encoded image latents. |
|
scheduler ([`FlowMatchEulerDiscreteScheduler`]): |
|
A scheduler to be used in combination with `transformer` to denoise the encoded image latents. |
|
vae ([`AutoencoderKL`]): |
|
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. |
|
text_encoder ([`T5EncoderModel`]): |
|
Frozen text-encoder. Stable Diffusion 3 uses |
|
[T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the |
|
[t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant. |
|
tokenizer (`T5TokenizerFast`): |
|
Tokenizer of class |
|
[T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer). |
|
""" |
|
|
|
model_cpu_offload_seq = "text_encoder->text_encoder_2->text_encoder->transformer->vae" |
|
_optional_components = [] |
|
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds", "negative_pooled_prompt_embeds"] |
|
|
|
def __init__( |
|
self, |
|
transformer: BriaTransformer2DModel, |
|
scheduler: Union[FlowMatchEulerDiscreteScheduler, KarrasDiffusionSchedulers], |
|
vae: AutoencoderKL, |
|
text_encoder: T5EncoderModel, |
|
tokenizer: T5TokenizerFast, |
|
controlnet: BriaControlNetModel, |
|
): |
|
super().__init__( |
|
transformer=transformer, scheduler=scheduler, vae=vae, text_encoder=text_encoder, tokenizer=tokenizer |
|
) |
|
self.register_modules(controlnet=controlnet) |
|
|
|
def prepare_image( |
|
self, |
|
image, |
|
width, |
|
height, |
|
batch_size, |
|
num_images_per_prompt, |
|
device, |
|
dtype, |
|
do_classifier_free_guidance=False, |
|
guess_mode=False, |
|
): |
|
if isinstance(image, torch.Tensor): |
|
pass |
|
else: |
|
image = self.image_processor.preprocess(image, height=height, width=width) |
|
|
|
image_batch_size = image.shape[0] |
|
|
|
if image_batch_size == 1: |
|
repeat_by = batch_size |
|
else: |
|
|
|
repeat_by = num_images_per_prompt |
|
|
|
image = image.repeat_interleave(repeat_by, dim=0) |
|
|
|
image = image.to(device=device, dtype=dtype) |
|
|
|
if do_classifier_free_guidance and not guess_mode: |
|
image = torch.cat([image] * 2) |
|
|
|
return image |
|
|
|
def prepare_control(self, control_image, width, height, batch_size, num_images_per_prompt, device, control_mode): |
|
num_channels_latents = self.transformer.config.in_channels // 4 |
|
control_image = self.prepare_image( |
|
image=control_image, |
|
width=width, |
|
height=height, |
|
batch_size=batch_size * num_images_per_prompt, |
|
num_images_per_prompt=num_images_per_prompt, |
|
device=device, |
|
dtype=self.vae.dtype, |
|
) |
|
height, width = control_image.shape[-2:] |
|
|
|
|
|
control_image = self.vae.encode(control_image).latent_dist.sample() |
|
control_image = (control_image - self.vae.config.shift_factor) * self.vae.config.scaling_factor |
|
|
|
|
|
height_control_image, width_control_image = control_image.shape[2:] |
|
control_image = self._pack_latents( |
|
control_image, |
|
batch_size * num_images_per_prompt, |
|
num_channels_latents, |
|
height_control_image, |
|
width_control_image, |
|
) |
|
|
|
|
|
if control_mode is not None: |
|
if not isinstance(control_mode, int): |
|
raise ValueError(" For `BriaControlNet`, `control_mode` should be an `int` or `None`") |
|
control_mode = torch.tensor(control_mode).to(device, dtype=torch.long) |
|
control_mode = control_mode.view(-1, 1).expand(control_image.shape[0], 1) |
|
|
|
return control_image, control_mode |
|
|
|
def prepare_multi_control(self, control_image, width, height, batch_size, num_images_per_prompt, device, control_mode): |
|
num_channels_latents = self.transformer.config.in_channels // 4 |
|
control_images = [] |
|
for i, control_image_ in enumerate(control_image): |
|
control_image_ = self.prepare_image( |
|
image=control_image_, |
|
width=width, |
|
height=height, |
|
batch_size=batch_size * num_images_per_prompt, |
|
num_images_per_prompt=num_images_per_prompt, |
|
device=device, |
|
dtype=self.vae.dtype, |
|
) |
|
height, width = control_image_.shape[-2:] |
|
|
|
|
|
control_image_ = self.vae.encode(control_image_).latent_dist.sample() |
|
control_image_ = (control_image_ - self.vae.config.shift_factor) * self.vae.config.scaling_factor |
|
|
|
|
|
height_control_image, width_control_image = control_image_.shape[2:] |
|
control_image_ = self._pack_latents( |
|
control_image_, |
|
batch_size * num_images_per_prompt, |
|
num_channels_latents, |
|
height_control_image, |
|
width_control_image, |
|
) |
|
control_images.append(control_image_) |
|
|
|
control_image = control_images |
|
|
|
|
|
if isinstance(control_mode, list) and len(control_mode) != len(control_image): |
|
raise ValueError( |
|
"For Multi-ControlNet, `control_mode` must be a list of the same " |
|
+ " length as the number of controlnets (control images) specified" |
|
) |
|
if not isinstance(control_mode, list): |
|
control_mode = [control_mode] * len(control_image) |
|
|
|
control_modes = [] |
|
for cmode in control_mode: |
|
if cmode is None: |
|
cmode = -1 |
|
control_mode = torch.tensor(cmode).expand(control_images[0].shape[0]).to(device, dtype=torch.long) |
|
control_modes.append(control_mode) |
|
control_mode = control_modes |
|
|
|
return control_image, control_mode |
|
|
|
def get_controlnet_keep(self, timesteps, control_guidance_start, control_guidance_end): |
|
controlnet_keep = [] |
|
for i in range(len(timesteps)): |
|
keeps = [ |
|
1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e) |
|
for s, e in zip(control_guidance_start, control_guidance_end) |
|
] |
|
controlnet_keep.append(keeps[0] if isinstance(self.controlnet, BriaControlNetModel) else keeps) |
|
return controlnet_keep |
|
|
|
def get_control_start_end(self, control_guidance_start, control_guidance_end): |
|
if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list): |
|
control_guidance_start = len(control_guidance_end) * [control_guidance_start] |
|
elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list): |
|
control_guidance_end = len(control_guidance_start) * [control_guidance_end] |
|
elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list): |
|
mult = 1 |
|
control_guidance_start, control_guidance_end = ( |
|
mult * [control_guidance_start], |
|
mult * [control_guidance_end], |
|
) |
|
|
|
return control_guidance_start, control_guidance_end |
|
|
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
prompt: Union[str, List[str]] = None, |
|
height: Optional[int] = None, |
|
width: Optional[int] = None, |
|
num_inference_steps: int = 30, |
|
timesteps: List[int] = None, |
|
guidance_scale: float = 3.5, |
|
control_guidance_start: Union[float, List[float]] = 0.0, |
|
control_guidance_end: Union[float, List[float]] = 1.0, |
|
control_image: Optional[PipelineImageInput] = None, |
|
control_mode: Optional[Union[int, List[int]]] = None, |
|
controlnet_conditioning_scale: Union[float, List[float]] = 1.0, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
num_images_per_prompt: Optional[int] = 1, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
joint_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, |
|
callback_on_step_end_tensor_inputs: List[str] = ["latents"], |
|
max_sequence_length: int = 128, |
|
): |
|
r""" |
|
Function invoked when calling the pipeline for generation. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. |
|
instead. |
|
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): |
|
The height in pixels of the generated image. This is set to 1024 by default for the best results. |
|
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): |
|
The width in pixels of the generated image. This is set to 1024 by default for the best results. |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
timesteps (`List[int]`, *optional*): |
|
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument |
|
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is |
|
passed will be used. Must be in descending order. |
|
guidance_scale (`float`, *optional*, defaults to 5.0): |
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). |
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen |
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > |
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, |
|
usually at the expense of lower image quality. |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass |
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is |
|
less than `1`). |
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of images to generate per prompt. |
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): |
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) |
|
to make generation deterministic. |
|
latents (`torch.FloatTensor`, *optional*): |
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor will ge generated by sampling using the supplied random `generator`. |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input |
|
argument. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generate image. Choose between |
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead |
|
of a plain tuple. |
|
joint_attention_kwargs (`dict`, *optional*): |
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under |
|
`self.processor` in |
|
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). |
|
callback_on_step_end (`Callable`, *optional*): |
|
A function that calls at the end of each denoising steps during the inference. The function is called |
|
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, |
|
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by |
|
`callback_on_step_end_tensor_inputs`. |
|
callback_on_step_end_tensor_inputs (`List`, *optional*): |
|
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list |
|
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the |
|
`._callback_tensor_inputs` attribute of your pipeline class. |
|
max_sequence_length (`int` defaults to 256): Maximum sequence length to use with the `prompt`. |
|
|
|
Examples: |
|
|
|
Returns: |
|
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] or `tuple`: |
|
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a |
|
`tuple`. When returning a tuple, the first element is a list with the generated images. |
|
""" |
|
|
|
height = height or self.default_sample_size * self.vae_scale_factor |
|
width = width or self.default_sample_size * self.vae_scale_factor |
|
control_guidance_start, control_guidance_end = self.get_control_start_end( |
|
control_guidance_start=control_guidance_start, control_guidance_end=control_guidance_end |
|
) |
|
|
|
|
|
self.check_inputs( |
|
prompt, |
|
height, |
|
width, |
|
negative_prompt=negative_prompt, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, |
|
max_sequence_length=max_sequence_length, |
|
) |
|
|
|
self._guidance_scale = guidance_scale |
|
self._joint_attention_kwargs = joint_attention_kwargs |
|
self._interrupt = False |
|
|
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
device = self._execution_device |
|
|
|
lora_scale = self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None |
|
|
|
(prompt_embeds, negative_prompt_embeds, text_ids) = self.encode_prompt( |
|
prompt=prompt, |
|
negative_prompt=negative_prompt, |
|
do_classifier_free_guidance=self.do_classifier_free_guidance, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
device=device, |
|
num_images_per_prompt=num_images_per_prompt, |
|
max_sequence_length=max_sequence_length, |
|
lora_scale=lora_scale, |
|
) |
|
|
|
if self.do_classifier_free_guidance: |
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) |
|
|
|
|
|
if control_image is not None: |
|
if isinstance(self.controlnet, BriaControlNetModel): |
|
control_image, control_mode = self.prepare_control( |
|
control_image=control_image, |
|
width=width, |
|
height=height, |
|
batch_size=batch_size, |
|
num_images_per_prompt=num_images_per_prompt, |
|
device=device, |
|
control_mode=control_mode, |
|
) |
|
elif isinstance(self.controlnet, BriaMultiControlNetModel): |
|
control_image, control_mode = self.prepare_multi_control( |
|
control_image=control_image, |
|
width=width, |
|
height=height, |
|
batch_size=batch_size, |
|
num_images_per_prompt=num_images_per_prompt, |
|
device=device, |
|
control_mode=control_mode, |
|
) |
|
|
|
|
|
|
|
sigmas = get_original_sigmas( |
|
num_train_timesteps=self.scheduler.config.num_train_timesteps, num_inference_steps=num_inference_steps |
|
) |
|
timesteps, num_inference_steps = retrieve_timesteps( |
|
self.scheduler, num_inference_steps, device, timesteps, sigmas=sigmas |
|
) |
|
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) |
|
self._num_timesteps = len(timesteps) |
|
|
|
|
|
num_channels_latents = self.transformer.config.in_channels // 4 |
|
latents, latent_image_ids = self.prepare_latents( |
|
batch_size=batch_size * num_images_per_prompt, |
|
num_channels_latents=num_channels_latents, |
|
height=height, |
|
width=width, |
|
dtype=prompt_embeds.dtype, |
|
device=device, |
|
generator=generator, |
|
latents=latents, |
|
) |
|
|
|
|
|
if control_image is not None: |
|
controlnet_keep = self.get_controlnet_keep( |
|
timesteps=timesteps, |
|
control_guidance_start=control_guidance_start, |
|
control_guidance_end=control_guidance_end, |
|
) |
|
|
|
|
|
|
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
if self.interrupt: |
|
continue |
|
|
|
|
|
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents |
|
|
|
if not isinstance(self.scheduler, FlowMatchEulerDiscreteScheduler): |
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) |
|
|
|
|
|
timestep = t.expand(latent_model_input.shape[0]) |
|
|
|
|
|
if control_image is not None: |
|
if isinstance(controlnet_keep[i], list): |
|
if isinstance(controlnet_conditioning_scale, list): |
|
cond_scale = controlnet_conditioning_scale |
|
else: |
|
cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])] |
|
else: |
|
controlnet_cond_scale = controlnet_conditioning_scale |
|
if isinstance(controlnet_cond_scale, list): |
|
controlnet_cond_scale = controlnet_cond_scale[0] |
|
cond_scale = controlnet_cond_scale * controlnet_keep[i] |
|
|
|
|
|
controlnet_block_samples, controlnet_single_block_samples = self.controlnet( |
|
hidden_states=latents, |
|
controlnet_cond=control_image, |
|
controlnet_mode=control_mode, |
|
conditioning_scale=cond_scale, |
|
timestep=timestep, |
|
|
|
|
|
encoder_hidden_states=prompt_embeds, |
|
txt_ids=text_ids, |
|
img_ids=latent_image_ids, |
|
joint_attention_kwargs=self.joint_attention_kwargs, |
|
return_dict=False, |
|
) |
|
else: |
|
controlnet_block_samples, controlnet_single_block_samples = None, None |
|
|
|
|
|
noise_pred = self.transformer( |
|
hidden_states=latent_model_input, |
|
timestep=timestep, |
|
encoder_hidden_states=prompt_embeds, |
|
joint_attention_kwargs=self.joint_attention_kwargs, |
|
return_dict=False, |
|
txt_ids=text_ids, |
|
img_ids=latent_image_ids, |
|
controlnet_block_samples=controlnet_block_samples, |
|
controlnet_single_block_samples=controlnet_single_block_samples, |
|
)[0] |
|
|
|
|
|
if self.do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
|
|
latents_dtype = latents.dtype |
|
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] |
|
|
|
if latents.dtype != latents_dtype: |
|
if torch.backends.mps.is_available(): |
|
|
|
latents = latents.to(latents_dtype) |
|
|
|
if callback_on_step_end is not None: |
|
callback_kwargs = {} |
|
for k in callback_on_step_end_tensor_inputs: |
|
callback_kwargs[k] = locals()[k] |
|
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) |
|
|
|
latents = callback_outputs.pop("latents", latents) |
|
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) |
|
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) |
|
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): |
|
progress_bar.update() |
|
|
|
if XLA_AVAILABLE: |
|
xm.mark_step() |
|
|
|
if output_type == "latent": |
|
image = latents |
|
|
|
else: |
|
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor) |
|
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor |
|
image = self.vae.decode(latents.to(dtype=self.vae.dtype), return_dict=False)[0] |
|
image = self.image_processor.postprocess(image, output_type=output_type) |
|
|
|
|
|
self.maybe_free_model_hooks() |
|
|
|
if not return_dict: |
|
return (image,) |
|
|
|
return FluxPipelineOutput(images=image) |
|
|