Upload 5 files
Browse files- bria_utils.py +71 -0
- controlnet_bria.py +650 -0
- pipeline_bria.py +576 -0
- pipeline_bria_controlnet.py +532 -0
- transformer_bria.py +335 -0
bria_utils.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Union, Optional, List
|
2 |
+
import torch
|
3 |
+
from diffusers.utils import logging
|
4 |
+
from transformers import (
|
5 |
+
T5EncoderModel,
|
6 |
+
T5TokenizerFast,
|
7 |
+
)
|
8 |
+
import numpy as np
|
9 |
+
|
10 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
11 |
+
|
12 |
+
def get_t5_prompt_embeds(
|
13 |
+
tokenizer: T5TokenizerFast ,
|
14 |
+
text_encoder: T5EncoderModel,
|
15 |
+
prompt: Union[str, List[str]] = None,
|
16 |
+
num_images_per_prompt: int = 1,
|
17 |
+
max_sequence_length: int = 128,
|
18 |
+
device: Optional[torch.device] = None,
|
19 |
+
):
|
20 |
+
device = device or text_encoder.device
|
21 |
+
|
22 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
23 |
+
batch_size = len(prompt)
|
24 |
+
|
25 |
+
text_inputs = tokenizer(
|
26 |
+
prompt,
|
27 |
+
# padding="max_length",
|
28 |
+
max_length=max_sequence_length,
|
29 |
+
truncation=True,
|
30 |
+
add_special_tokens=True,
|
31 |
+
return_tensors="pt",
|
32 |
+
)
|
33 |
+
text_input_ids = text_inputs.input_ids
|
34 |
+
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
35 |
+
|
36 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
|
37 |
+
removed_text = tokenizer.batch_decode(untruncated_ids[:, max_sequence_length - 1 : -1])
|
38 |
+
logger.warning(
|
39 |
+
"The following part of your input was truncated because `max_sequence_length` is set to "
|
40 |
+
f" {max_sequence_length} tokens: {removed_text}"
|
41 |
+
)
|
42 |
+
|
43 |
+
prompt_embeds = text_encoder(text_input_ids.to(device))[0]
|
44 |
+
|
45 |
+
# Concat zeros to max_sequence
|
46 |
+
b, seq_len, dim = prompt_embeds.shape
|
47 |
+
if seq_len<max_sequence_length:
|
48 |
+
padding = torch.zeros((b,max_sequence_length-seq_len,dim),dtype=prompt_embeds.dtype,device=prompt_embeds.device)
|
49 |
+
prompt_embeds = torch.concat([prompt_embeds,padding],dim=1)
|
50 |
+
|
51 |
+
prompt_embeds = prompt_embeds.to(device=device)
|
52 |
+
|
53 |
+
_, seq_len, _ = prompt_embeds.shape
|
54 |
+
|
55 |
+
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
|
56 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
57 |
+
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
58 |
+
|
59 |
+
return prompt_embeds
|
60 |
+
|
61 |
+
# in order the get the same sigmas as in training and sample from them
|
62 |
+
def get_original_sigmas(num_train_timesteps=1000,num_inference_steps=1000):
|
63 |
+
timesteps = np.linspace(1, num_train_timesteps, num_train_timesteps, dtype=np.float32)[::-1].copy()
|
64 |
+
sigmas = timesteps / num_train_timesteps
|
65 |
+
|
66 |
+
inds = [int(ind) for ind in np.linspace(0, num_train_timesteps-1, num_inference_steps)]
|
67 |
+
new_sigmas = sigmas[inds]
|
68 |
+
return new_sigmas
|
69 |
+
|
70 |
+
def is_ng_none(negative_prompt):
|
71 |
+
return negative_prompt is None or negative_prompt=='' or (isinstance(negative_prompt,list) and negative_prompt[0] is None) or (type(negative_prompt)==list and negative_prompt[0]=='')
|
controlnet_bria.py
ADDED
@@ -0,0 +1,650 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# type: ignore
|
2 |
+
# Copyright 2024 Black Forest Labs, The HuggingFace Team and The InstantX Team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
from dataclasses import dataclass
|
17 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
18 |
+
|
19 |
+
import torch
|
20 |
+
import torch.nn as nn
|
21 |
+
|
22 |
+
from transformer_bria import TimestepProjEmbeddings
|
23 |
+
from diffusers.models.controlnet import zero_module, BaseOutput
|
24 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
25 |
+
from diffusers.loaders import PeftAdapterMixin
|
26 |
+
from diffusers.models.modeling_utils import ModelMixin
|
27 |
+
from diffusers.utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers
|
28 |
+
from diffusers.models.modeling_outputs import Transformer2DModelOutput
|
29 |
+
|
30 |
+
# from transformer_flux import FluxSingleTransformerBlock, FluxTransformerBlock, EmbedND
|
31 |
+
from diffusers.models.transformers.transformer_flux import EmbedND, FluxSingleTransformerBlock, FluxTransformerBlock
|
32 |
+
|
33 |
+
from diffusers.models.attention_processor import AttentionProcessor
|
34 |
+
|
35 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
36 |
+
|
37 |
+
|
38 |
+
@dataclass
|
39 |
+
class BriaControlNetOutput(BaseOutput):
|
40 |
+
controlnet_block_samples: Tuple[torch.Tensor]
|
41 |
+
controlnet_single_block_samples: Tuple[torch.Tensor]
|
42 |
+
|
43 |
+
|
44 |
+
class BriaControlNetModel(ModelMixin, ConfigMixin, PeftAdapterMixin):
|
45 |
+
_supports_gradient_checkpointing = True
|
46 |
+
|
47 |
+
@register_to_config
|
48 |
+
def __init__(
|
49 |
+
self,
|
50 |
+
patch_size: int = 1,
|
51 |
+
in_channels: int = 64,
|
52 |
+
num_layers: int = 19,
|
53 |
+
num_single_layers: int = 38,
|
54 |
+
attention_head_dim: int = 128,
|
55 |
+
num_attention_heads: int = 24,
|
56 |
+
joint_attention_dim: int = 4096,
|
57 |
+
pooled_projection_dim: int = 768,
|
58 |
+
guidance_embeds: bool = False,
|
59 |
+
axes_dims_rope: List[int] = [16, 56, 56],
|
60 |
+
num_mode: int = None,
|
61 |
+
rope_theta: int = 10000,
|
62 |
+
time_theta: int = 10000,
|
63 |
+
):
|
64 |
+
super().__init__()
|
65 |
+
self.out_channels = in_channels
|
66 |
+
self.inner_dim = num_attention_heads * attention_head_dim
|
67 |
+
|
68 |
+
# self.pos_embed = FluxPosEmbed(theta=10000, axes_dim=axes_dims_rope)
|
69 |
+
self.pos_embed = EmbedND(dim=self.inner_dim, theta=rope_theta, axes_dim=axes_dims_rope)
|
70 |
+
|
71 |
+
# text_time_guidance_cls = (
|
72 |
+
# CombinedTimestepGuidanceTextProjEmbeddings if guidance_embeds else CombinedTimestepTextProjEmbeddings
|
73 |
+
# )
|
74 |
+
# self.time_text_embed = text_time_guidance_cls(
|
75 |
+
# embedding_dim=self.inner_dim, pooled_projection_dim=pooled_projection_dim
|
76 |
+
# )
|
77 |
+
self.time_embed = TimestepProjEmbeddings(
|
78 |
+
embedding_dim=self.inner_dim, time_theta=time_theta
|
79 |
+
)
|
80 |
+
|
81 |
+
self.context_embedder = nn.Linear(joint_attention_dim, self.inner_dim)
|
82 |
+
self.x_embedder = torch.nn.Linear(in_channels, self.inner_dim)
|
83 |
+
|
84 |
+
self.transformer_blocks = nn.ModuleList(
|
85 |
+
[
|
86 |
+
FluxTransformerBlock(
|
87 |
+
dim=self.inner_dim,
|
88 |
+
num_attention_heads=num_attention_heads,
|
89 |
+
attention_head_dim=attention_head_dim,
|
90 |
+
)
|
91 |
+
for i in range(num_layers)
|
92 |
+
]
|
93 |
+
)
|
94 |
+
|
95 |
+
self.single_transformer_blocks = nn.ModuleList(
|
96 |
+
[
|
97 |
+
FluxSingleTransformerBlock(
|
98 |
+
dim=self.inner_dim,
|
99 |
+
num_attention_heads=num_attention_heads,
|
100 |
+
attention_head_dim=attention_head_dim,
|
101 |
+
)
|
102 |
+
for i in range(num_single_layers)
|
103 |
+
]
|
104 |
+
)
|
105 |
+
|
106 |
+
# controlnet_blocks
|
107 |
+
self.controlnet_blocks = nn.ModuleList([])
|
108 |
+
for _ in range(len(self.transformer_blocks)):
|
109 |
+
self.controlnet_blocks.append(zero_module(nn.Linear(self.inner_dim, self.inner_dim)))
|
110 |
+
|
111 |
+
self.controlnet_single_blocks = nn.ModuleList([])
|
112 |
+
for _ in range(len(self.single_transformer_blocks)):
|
113 |
+
self.controlnet_single_blocks.append(zero_module(nn.Linear(self.inner_dim, self.inner_dim)))
|
114 |
+
|
115 |
+
self.union = num_mode is not None and num_mode > 0
|
116 |
+
if self.union:
|
117 |
+
self.controlnet_mode_embedder = nn.Embedding(num_mode, self.inner_dim)
|
118 |
+
|
119 |
+
self.controlnet_x_embedder = zero_module(torch.nn.Linear(in_channels, self.inner_dim))
|
120 |
+
|
121 |
+
self.gradient_checkpointing = False
|
122 |
+
|
123 |
+
@property
|
124 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
|
125 |
+
def attn_processors(self):
|
126 |
+
r"""
|
127 |
+
Returns:
|
128 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
129 |
+
indexed by its weight name.
|
130 |
+
"""
|
131 |
+
# set recursively
|
132 |
+
processors = {}
|
133 |
+
|
134 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
135 |
+
if hasattr(module, "get_processor"):
|
136 |
+
processors[f"{name}.processor"] = module.get_processor()
|
137 |
+
|
138 |
+
for sub_name, child in module.named_children():
|
139 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
140 |
+
|
141 |
+
return processors
|
142 |
+
|
143 |
+
for name, module in self.named_children():
|
144 |
+
fn_recursive_add_processors(name, module, processors)
|
145 |
+
|
146 |
+
return processors
|
147 |
+
|
148 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
149 |
+
def set_attn_processor(self, processor):
|
150 |
+
r"""
|
151 |
+
Sets the attention processor to use to compute attention.
|
152 |
+
|
153 |
+
Parameters:
|
154 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
155 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
156 |
+
for **all** `Attention` layers.
|
157 |
+
|
158 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
159 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
160 |
+
|
161 |
+
"""
|
162 |
+
count = len(self.attn_processors.keys())
|
163 |
+
|
164 |
+
if isinstance(processor, dict) and len(processor) != count:
|
165 |
+
raise ValueError(
|
166 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
167 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
168 |
+
)
|
169 |
+
|
170 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
171 |
+
if hasattr(module, "set_processor"):
|
172 |
+
if not isinstance(processor, dict):
|
173 |
+
module.set_processor(processor)
|
174 |
+
else:
|
175 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
176 |
+
|
177 |
+
for sub_name, child in module.named_children():
|
178 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
179 |
+
|
180 |
+
for name, module in self.named_children():
|
181 |
+
fn_recursive_attn_processor(name, module, processor)
|
182 |
+
|
183 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
184 |
+
if hasattr(module, "gradient_checkpointing"):
|
185 |
+
module.gradient_checkpointing = value
|
186 |
+
|
187 |
+
@classmethod
|
188 |
+
def from_transformer(
|
189 |
+
cls,
|
190 |
+
transformer,
|
191 |
+
num_layers: int = 4,
|
192 |
+
num_single_layers: int = 10,
|
193 |
+
attention_head_dim: int = 128,
|
194 |
+
num_attention_heads: int = 24,
|
195 |
+
load_weights_from_transformer=True,
|
196 |
+
):
|
197 |
+
config = transformer.config
|
198 |
+
config["num_layers"] = num_layers
|
199 |
+
config["num_single_layers"] = num_single_layers
|
200 |
+
config["attention_head_dim"] = attention_head_dim
|
201 |
+
config["num_attention_heads"] = num_attention_heads
|
202 |
+
|
203 |
+
controlnet = cls(**config)
|
204 |
+
|
205 |
+
if load_weights_from_transformer:
|
206 |
+
controlnet.pos_embed.load_state_dict(transformer.pos_embed.state_dict())
|
207 |
+
controlnet.time_text_embed.load_state_dict(transformer.time_text_embed.state_dict())
|
208 |
+
controlnet.context_embedder.load_state_dict(transformer.context_embedder.state_dict())
|
209 |
+
controlnet.x_embedder.load_state_dict(transformer.x_embedder.state_dict())
|
210 |
+
controlnet.transformer_blocks.load_state_dict(transformer.transformer_blocks.state_dict(), strict=False)
|
211 |
+
controlnet.single_transformer_blocks.load_state_dict(
|
212 |
+
transformer.single_transformer_blocks.state_dict(), strict=False
|
213 |
+
)
|
214 |
+
|
215 |
+
controlnet.controlnet_x_embedder = zero_module(controlnet.controlnet_x_embedder)
|
216 |
+
|
217 |
+
return controlnet
|
218 |
+
|
219 |
+
def forward(
|
220 |
+
self,
|
221 |
+
hidden_states: torch.Tensor,
|
222 |
+
controlnet_cond: torch.Tensor,
|
223 |
+
controlnet_mode: torch.Tensor = None,
|
224 |
+
conditioning_scale: float = 1.0,
|
225 |
+
encoder_hidden_states: torch.Tensor = None,
|
226 |
+
pooled_projections: torch.Tensor = None,
|
227 |
+
timestep: torch.LongTensor = None,
|
228 |
+
img_ids: torch.Tensor = None,
|
229 |
+
txt_ids: torch.Tensor = None,
|
230 |
+
guidance: torch.Tensor = None,
|
231 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
232 |
+
return_dict: bool = True,
|
233 |
+
) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
|
234 |
+
"""
|
235 |
+
The [`FluxTransformer2DModel`] forward method.
|
236 |
+
|
237 |
+
Args:
|
238 |
+
hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
|
239 |
+
Input `hidden_states`.
|
240 |
+
controlnet_cond (`torch.Tensor`):
|
241 |
+
The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`.
|
242 |
+
controlnet_mode (`torch.Tensor`):
|
243 |
+
The mode tensor of shape `(batch_size, 1)`.
|
244 |
+
conditioning_scale (`float`, defaults to `1.0`):
|
245 |
+
The scale factor for ControlNet outputs.
|
246 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`):
|
247 |
+
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
|
248 |
+
pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected
|
249 |
+
from the embeddings of input conditions.
|
250 |
+
timestep ( `torch.LongTensor`):
|
251 |
+
Used to indicate denoising step.
|
252 |
+
block_controlnet_hidden_states: (`list` of `torch.Tensor`):
|
253 |
+
A list of tensors that if specified are added to the residuals of transformer blocks.
|
254 |
+
joint_attention_kwargs (`dict`, *optional*):
|
255 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
256 |
+
`self.processor` in
|
257 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
258 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
259 |
+
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
|
260 |
+
tuple.
|
261 |
+
|
262 |
+
Returns:
|
263 |
+
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
264 |
+
`tuple` where the first element is the sample tensor.
|
265 |
+
"""
|
266 |
+
if guidance is not None:
|
267 |
+
print("guidance is not supported in BriaControlNetModel")
|
268 |
+
if pooled_projections is not None:
|
269 |
+
print("pooled_projections is not supported in BriaControlNetModel")
|
270 |
+
if joint_attention_kwargs is not None:
|
271 |
+
joint_attention_kwargs = joint_attention_kwargs.copy()
|
272 |
+
lora_scale = joint_attention_kwargs.pop("scale", 1.0)
|
273 |
+
else:
|
274 |
+
lora_scale = 1.0
|
275 |
+
|
276 |
+
if USE_PEFT_BACKEND:
|
277 |
+
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
278 |
+
scale_lora_layers(self, lora_scale)
|
279 |
+
else:
|
280 |
+
if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None:
|
281 |
+
logger.warning(
|
282 |
+
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
|
283 |
+
)
|
284 |
+
hidden_states = self.x_embedder(hidden_states)
|
285 |
+
|
286 |
+
# add
|
287 |
+
hidden_states = hidden_states + self.controlnet_x_embedder(controlnet_cond)
|
288 |
+
|
289 |
+
timestep = timestep.to(hidden_states.dtype) # Original code was * 1000
|
290 |
+
if guidance is not None:
|
291 |
+
guidance = guidance.to(hidden_states.dtype) # Original code was * 1000
|
292 |
+
else:
|
293 |
+
guidance = None
|
294 |
+
# temb = (
|
295 |
+
# self.time_text_embed(timestep, pooled_projections)
|
296 |
+
# if guidance is None
|
297 |
+
# else self.time_text_embed(timestep, guidance, pooled_projections)
|
298 |
+
# )
|
299 |
+
temb = self.time_embed(timestep, dtype=hidden_states.dtype)
|
300 |
+
|
301 |
+
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
|
302 |
+
|
303 |
+
if self.union:
|
304 |
+
# union mode
|
305 |
+
if controlnet_mode is None:
|
306 |
+
raise ValueError("`controlnet_mode` cannot be `None` when applying ControlNet-Union")
|
307 |
+
# union mode emb
|
308 |
+
controlnet_mode_emb = self.controlnet_mode_embedder(controlnet_mode)
|
309 |
+
if controlnet_mode_emb.shape[0] < encoder_hidden_states.shape[0]:
|
310 |
+
controlnet_mode_emb = controlnet_mode_emb.expand(encoder_hidden_states.shape[0], 1, 2048)
|
311 |
+
encoder_hidden_states = torch.cat([controlnet_mode_emb, encoder_hidden_states], dim=1)
|
312 |
+
txt_ids = torch.cat((txt_ids[:, 0:1, :], txt_ids), dim=1)
|
313 |
+
|
314 |
+
# if txt_ids.ndim == 3:
|
315 |
+
# logger.warning(
|
316 |
+
# "Passing `txt_ids` 3d torch.Tensor is deprecated."
|
317 |
+
# "Please remove the batch dimension and pass it as a 2d torch Tensor"
|
318 |
+
# )
|
319 |
+
# txt_ids = txt_ids[0]
|
320 |
+
# if img_ids.ndim == 3:
|
321 |
+
# logger.warning(
|
322 |
+
# "Passing `img_ids` 3d torch.Tensor is deprecated."
|
323 |
+
# "Please remove the batch dimension and pass it as a 2d torch Tensor"
|
324 |
+
# )
|
325 |
+
# img_ids = img_ids[0]
|
326 |
+
|
327 |
+
# ids = torch.cat((txt_ids, img_ids), dim=0)
|
328 |
+
ids = torch.cat((txt_ids, img_ids), dim=1)
|
329 |
+
image_rotary_emb = self.pos_embed(ids)
|
330 |
+
|
331 |
+
block_samples = ()
|
332 |
+
for index_block, block in enumerate(self.transformer_blocks):
|
333 |
+
if self.training and self.gradient_checkpointing:
|
334 |
+
|
335 |
+
def create_custom_forward(module, return_dict=None):
|
336 |
+
def custom_forward(*inputs):
|
337 |
+
if return_dict is not None:
|
338 |
+
return module(*inputs, return_dict=return_dict)
|
339 |
+
else:
|
340 |
+
return module(*inputs)
|
341 |
+
|
342 |
+
return custom_forward
|
343 |
+
|
344 |
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
345 |
+
encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint(
|
346 |
+
create_custom_forward(block),
|
347 |
+
hidden_states,
|
348 |
+
encoder_hidden_states,
|
349 |
+
temb,
|
350 |
+
image_rotary_emb,
|
351 |
+
**ckpt_kwargs,
|
352 |
+
)
|
353 |
+
|
354 |
+
else:
|
355 |
+
encoder_hidden_states, hidden_states = block(
|
356 |
+
hidden_states=hidden_states,
|
357 |
+
encoder_hidden_states=encoder_hidden_states,
|
358 |
+
temb=temb,
|
359 |
+
image_rotary_emb=image_rotary_emb,
|
360 |
+
)
|
361 |
+
block_samples = block_samples + (hidden_states,)
|
362 |
+
|
363 |
+
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
|
364 |
+
|
365 |
+
single_block_samples = ()
|
366 |
+
for index_block, block in enumerate(self.single_transformer_blocks):
|
367 |
+
if self.training and self.gradient_checkpointing:
|
368 |
+
|
369 |
+
def create_custom_forward(module, return_dict=None):
|
370 |
+
def custom_forward(*inputs):
|
371 |
+
if return_dict is not None:
|
372 |
+
return module(*inputs, return_dict=return_dict)
|
373 |
+
else:
|
374 |
+
return module(*inputs)
|
375 |
+
|
376 |
+
return custom_forward
|
377 |
+
|
378 |
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
379 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
380 |
+
create_custom_forward(block),
|
381 |
+
hidden_states,
|
382 |
+
temb,
|
383 |
+
image_rotary_emb,
|
384 |
+
**ckpt_kwargs,
|
385 |
+
)
|
386 |
+
|
387 |
+
else:
|
388 |
+
hidden_states = block(
|
389 |
+
hidden_states=hidden_states,
|
390 |
+
temb=temb,
|
391 |
+
image_rotary_emb=image_rotary_emb,
|
392 |
+
)
|
393 |
+
single_block_samples = single_block_samples + (hidden_states[:, encoder_hidden_states.shape[1] :],)
|
394 |
+
|
395 |
+
# controlnet block
|
396 |
+
controlnet_block_samples = ()
|
397 |
+
for block_sample, controlnet_block in zip(block_samples, self.controlnet_blocks):
|
398 |
+
block_sample = controlnet_block(block_sample)
|
399 |
+
controlnet_block_samples = controlnet_block_samples + (block_sample,)
|
400 |
+
|
401 |
+
controlnet_single_block_samples = ()
|
402 |
+
for single_block_sample, controlnet_block in zip(single_block_samples, self.controlnet_single_blocks):
|
403 |
+
single_block_sample = controlnet_block(single_block_sample)
|
404 |
+
controlnet_single_block_samples = controlnet_single_block_samples + (single_block_sample,)
|
405 |
+
|
406 |
+
# scaling
|
407 |
+
controlnet_block_samples = [sample * conditioning_scale for sample in controlnet_block_samples]
|
408 |
+
controlnet_single_block_samples = [sample * conditioning_scale for sample in controlnet_single_block_samples]
|
409 |
+
|
410 |
+
controlnet_block_samples = None if len(controlnet_block_samples) == 0 else controlnet_block_samples
|
411 |
+
controlnet_single_block_samples = (
|
412 |
+
None if len(controlnet_single_block_samples) == 0 else controlnet_single_block_samples
|
413 |
+
)
|
414 |
+
|
415 |
+
if USE_PEFT_BACKEND:
|
416 |
+
# remove `lora_scale` from each PEFT layer
|
417 |
+
unscale_lora_layers(self, lora_scale)
|
418 |
+
|
419 |
+
if not return_dict:
|
420 |
+
return (controlnet_block_samples, controlnet_single_block_samples)
|
421 |
+
|
422 |
+
return BriaControlNetOutput(
|
423 |
+
controlnet_block_samples=controlnet_block_samples,
|
424 |
+
controlnet_single_block_samples=controlnet_single_block_samples,
|
425 |
+
)
|
426 |
+
|
427 |
+
|
428 |
+
class BriaMultiControlNetModel(ModelMixin):
|
429 |
+
r"""
|
430 |
+
`BriaMultiControlNetModel` wrapper class for Multi-BriaControlNetModel
|
431 |
+
|
432 |
+
This module is a wrapper for multiple instances of the `BriaControlNetModel`. The `forward()` API is designed to be
|
433 |
+
compatible with `BriaControlNetModel`.
|
434 |
+
|
435 |
+
Args:
|
436 |
+
controlnets (`List[BriaControlNetModel]`):
|
437 |
+
Provides additional conditioning to the unet during the denoising process. You must set multiple
|
438 |
+
`BriaControlNetModel` as a list.
|
439 |
+
"""
|
440 |
+
|
441 |
+
def __init__(self, controlnets):
|
442 |
+
super().__init__()
|
443 |
+
self.nets = nn.ModuleList(controlnets)
|
444 |
+
|
445 |
+
def forward(
|
446 |
+
self,
|
447 |
+
hidden_states: torch.FloatTensor,
|
448 |
+
controlnet_cond: List[torch.tensor],
|
449 |
+
controlnet_mode: List[torch.tensor],
|
450 |
+
conditioning_scale: List[float],
|
451 |
+
encoder_hidden_states: torch.Tensor = None,
|
452 |
+
pooled_projections: torch.Tensor = None,
|
453 |
+
timestep: torch.LongTensor = None,
|
454 |
+
img_ids: torch.Tensor = None,
|
455 |
+
txt_ids: torch.Tensor = None,
|
456 |
+
guidance: torch.Tensor = None,
|
457 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
458 |
+
return_dict: bool = True,
|
459 |
+
) -> Union[BriaControlNetOutput, Tuple]:
|
460 |
+
# ControlNet-Union with multiple conditions
|
461 |
+
# only load one ControlNet for saving memories
|
462 |
+
if len(self.nets) == 1 and self.nets[0].union:
|
463 |
+
controlnet = self.nets[0]
|
464 |
+
|
465 |
+
for i, (image, mode, scale) in enumerate(zip(controlnet_cond, controlnet_mode, conditioning_scale)):
|
466 |
+
block_samples, single_block_samples = controlnet(
|
467 |
+
hidden_states=hidden_states,
|
468 |
+
controlnet_cond=image,
|
469 |
+
controlnet_mode=mode[:, None],
|
470 |
+
conditioning_scale=scale,
|
471 |
+
timestep=timestep,
|
472 |
+
guidance=guidance,
|
473 |
+
pooled_projections=pooled_projections,
|
474 |
+
encoder_hidden_states=encoder_hidden_states,
|
475 |
+
txt_ids=txt_ids,
|
476 |
+
img_ids=img_ids,
|
477 |
+
joint_attention_kwargs=joint_attention_kwargs,
|
478 |
+
return_dict=return_dict,
|
479 |
+
)
|
480 |
+
|
481 |
+
# merge samples
|
482 |
+
if i == 0:
|
483 |
+
control_block_samples = block_samples
|
484 |
+
control_single_block_samples = single_block_samples
|
485 |
+
else:
|
486 |
+
control_block_samples = [
|
487 |
+
control_block_sample + block_sample
|
488 |
+
for control_block_sample, block_sample in zip(control_block_samples, block_samples)
|
489 |
+
]
|
490 |
+
|
491 |
+
control_single_block_samples = [
|
492 |
+
control_single_block_sample + block_sample
|
493 |
+
for control_single_block_sample, block_sample in zip(
|
494 |
+
control_single_block_samples, single_block_samples
|
495 |
+
)
|
496 |
+
]
|
497 |
+
|
498 |
+
# Regular Multi-ControlNets
|
499 |
+
# load all ControlNets into memories
|
500 |
+
else:
|
501 |
+
for i, (image, mode, scale, controlnet) in enumerate(
|
502 |
+
zip(controlnet_cond, controlnet_mode, conditioning_scale, self.nets)
|
503 |
+
):
|
504 |
+
block_samples, single_block_samples = controlnet(
|
505 |
+
hidden_states=hidden_states,
|
506 |
+
controlnet_cond=image,
|
507 |
+
controlnet_mode=mode[:, None],
|
508 |
+
conditioning_scale=scale,
|
509 |
+
timestep=timestep,
|
510 |
+
guidance=guidance,
|
511 |
+
pooled_projections=pooled_projections,
|
512 |
+
encoder_hidden_states=encoder_hidden_states,
|
513 |
+
txt_ids=txt_ids,
|
514 |
+
img_ids=img_ids,
|
515 |
+
joint_attention_kwargs=joint_attention_kwargs,
|
516 |
+
return_dict=return_dict,
|
517 |
+
)
|
518 |
+
|
519 |
+
# merge samples
|
520 |
+
if i == 0:
|
521 |
+
control_block_samples = block_samples
|
522 |
+
control_single_block_samples = single_block_samples
|
523 |
+
else:
|
524 |
+
if block_samples is not None and control_block_samples is not None:
|
525 |
+
control_block_samples = [
|
526 |
+
control_block_sample + block_sample
|
527 |
+
for control_block_sample, block_sample in zip(control_block_samples, block_samples)
|
528 |
+
]
|
529 |
+
if single_block_samples is not None and control_single_block_samples is not None:
|
530 |
+
control_single_block_samples = [
|
531 |
+
control_single_block_sample + block_sample
|
532 |
+
for control_single_block_sample, block_sample in zip(
|
533 |
+
control_single_block_samples, single_block_samples
|
534 |
+
)
|
535 |
+
]
|
536 |
+
|
537 |
+
return control_block_samples, control_single_block_samples
|
538 |
+
|
539 |
+
|
540 |
+
|
541 |
+
class BriaMultiControlNetModel(ModelMixin):
|
542 |
+
r"""
|
543 |
+
`BriaMultiControlNetModel` wrapper class for Multi-BriaControlNetModel
|
544 |
+
|
545 |
+
This module is a wrapper for multiple instances of the `BriaControlNetModel`. The `forward()` API is designed to be
|
546 |
+
compatible with `BriaControlNetModel`.
|
547 |
+
|
548 |
+
Args:
|
549 |
+
controlnets (`List[BriaControlNetModel]`):
|
550 |
+
Provides additional conditioning to the unet during the denoising process. You must set multiple
|
551 |
+
`BriaControlNetModel` as a list.
|
552 |
+
"""
|
553 |
+
|
554 |
+
def __init__(self, controlnets):
|
555 |
+
super().__init__()
|
556 |
+
self.nets = nn.ModuleList(controlnets)
|
557 |
+
|
558 |
+
def forward(
|
559 |
+
self,
|
560 |
+
hidden_states: torch.FloatTensor,
|
561 |
+
controlnet_cond: List[torch.tensor],
|
562 |
+
controlnet_mode: List[torch.tensor],
|
563 |
+
conditioning_scale: List[float],
|
564 |
+
encoder_hidden_states: torch.Tensor = None,
|
565 |
+
pooled_projections: torch.Tensor = None,
|
566 |
+
timestep: torch.LongTensor = None,
|
567 |
+
img_ids: torch.Tensor = None,
|
568 |
+
txt_ids: torch.Tensor = None,
|
569 |
+
guidance: torch.Tensor = None,
|
570 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
571 |
+
return_dict: bool = True,
|
572 |
+
) -> Union[BriaControlNetOutput, Tuple]:
|
573 |
+
# ControlNet-Union with multiple conditions
|
574 |
+
# only load one ControlNet for saving memories
|
575 |
+
if len(self.nets) == 1 and self.nets[0].union:
|
576 |
+
controlnet = self.nets[0]
|
577 |
+
|
578 |
+
for i, (image, mode, scale) in enumerate(zip(controlnet_cond, controlnet_mode, conditioning_scale)):
|
579 |
+
block_samples, single_block_samples = controlnet(
|
580 |
+
hidden_states=hidden_states,
|
581 |
+
controlnet_cond=image,
|
582 |
+
controlnet_mode=mode[:, None],
|
583 |
+
conditioning_scale=scale,
|
584 |
+
timestep=timestep,
|
585 |
+
guidance=guidance,
|
586 |
+
pooled_projections=pooled_projections,
|
587 |
+
encoder_hidden_states=encoder_hidden_states,
|
588 |
+
txt_ids=txt_ids,
|
589 |
+
img_ids=img_ids,
|
590 |
+
joint_attention_kwargs=joint_attention_kwargs,
|
591 |
+
return_dict=return_dict,
|
592 |
+
)
|
593 |
+
|
594 |
+
# merge samples
|
595 |
+
if i == 0:
|
596 |
+
control_block_samples = block_samples
|
597 |
+
control_single_block_samples = single_block_samples
|
598 |
+
else:
|
599 |
+
control_block_samples = [
|
600 |
+
control_block_sample + block_sample
|
601 |
+
for control_block_sample, block_sample in zip(control_block_samples, block_samples)
|
602 |
+
]
|
603 |
+
|
604 |
+
control_single_block_samples = [
|
605 |
+
control_single_block_sample + block_sample
|
606 |
+
for control_single_block_sample, block_sample in zip(
|
607 |
+
control_single_block_samples, single_block_samples
|
608 |
+
)
|
609 |
+
]
|
610 |
+
|
611 |
+
# Regular Multi-ControlNets
|
612 |
+
# load all ControlNets into memories
|
613 |
+
else:
|
614 |
+
for i, (image, mode, scale, controlnet) in enumerate(
|
615 |
+
zip(controlnet_cond, controlnet_mode, conditioning_scale, self.nets)
|
616 |
+
):
|
617 |
+
block_samples, single_block_samples = controlnet(
|
618 |
+
hidden_states=hidden_states,
|
619 |
+
controlnet_cond=image,
|
620 |
+
controlnet_mode=mode[:, None],
|
621 |
+
conditioning_scale=scale,
|
622 |
+
timestep=timestep,
|
623 |
+
guidance=guidance,
|
624 |
+
pooled_projections=pooled_projections,
|
625 |
+
encoder_hidden_states=encoder_hidden_states,
|
626 |
+
txt_ids=txt_ids,
|
627 |
+
img_ids=img_ids,
|
628 |
+
joint_attention_kwargs=joint_attention_kwargs,
|
629 |
+
return_dict=return_dict,
|
630 |
+
)
|
631 |
+
|
632 |
+
# merge samples
|
633 |
+
if i == 0:
|
634 |
+
control_block_samples = block_samples
|
635 |
+
control_single_block_samples = single_block_samples
|
636 |
+
else:
|
637 |
+
if block_samples is not None and control_block_samples is not None:
|
638 |
+
control_block_samples = [
|
639 |
+
control_block_sample + block_sample
|
640 |
+
for control_block_sample, block_sample in zip(control_block_samples, block_samples)
|
641 |
+
]
|
642 |
+
if single_block_samples is not None and control_single_block_samples is not None:
|
643 |
+
control_single_block_samples = [
|
644 |
+
control_single_block_sample + block_sample
|
645 |
+
for control_single_block_sample, block_sample in zip(
|
646 |
+
control_single_block_samples, single_block_samples
|
647 |
+
)
|
648 |
+
]
|
649 |
+
|
650 |
+
return control_block_samples, control_single_block_samples
|
pipeline_bria.py
ADDED
@@ -0,0 +1,576 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from diffusers.pipelines.flux.pipeline_flux import FluxPipeline, retrieve_timesteps, calculate_shift
|
2 |
+
from typing import Any, Callable, Dict, List, Optional, Union
|
3 |
+
|
4 |
+
import torch
|
5 |
+
|
6 |
+
from transformers import (
|
7 |
+
T5EncoderModel,
|
8 |
+
T5TokenizerFast,
|
9 |
+
)
|
10 |
+
|
11 |
+
from diffusers.image_processor import VaeImageProcessor
|
12 |
+
from diffusers import AutoencoderKL , DDIMScheduler, EulerAncestralDiscreteScheduler
|
13 |
+
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
|
14 |
+
from diffusers.schedulers import KarrasDiffusionSchedulers
|
15 |
+
from diffusers.loaders import FluxLoraLoaderMixin
|
16 |
+
from diffusers.utils import (
|
17 |
+
USE_PEFT_BACKEND,
|
18 |
+
is_torch_xla_available,
|
19 |
+
logging,
|
20 |
+
replace_example_docstring,
|
21 |
+
scale_lora_layers,
|
22 |
+
unscale_lora_layers,
|
23 |
+
)
|
24 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
25 |
+
from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput
|
26 |
+
from transformer_bria import BriaTransformer2DModel
|
27 |
+
from bria_utils import get_t5_prompt_embeds, get_original_sigmas, is_ng_none
|
28 |
+
import numpy as np
|
29 |
+
|
30 |
+
if is_torch_xla_available():
|
31 |
+
import torch_xla.core.xla_model as xm
|
32 |
+
|
33 |
+
XLA_AVAILABLE = True
|
34 |
+
else:
|
35 |
+
XLA_AVAILABLE = False
|
36 |
+
|
37 |
+
|
38 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
39 |
+
|
40 |
+
EXAMPLE_DOC_STRING = """
|
41 |
+
Examples:
|
42 |
+
```py
|
43 |
+
>>> import torch
|
44 |
+
>>> from diffusers import StableDiffusion3Pipeline
|
45 |
+
|
46 |
+
>>> pipe = StableDiffusion3Pipeline.from_pretrained(
|
47 |
+
... "stabilityai/stable-diffusion-3-medium-diffusers", torch_dtype=torch.float16
|
48 |
+
... )
|
49 |
+
>>> pipe.to("cuda")
|
50 |
+
>>> prompt = "A cat holding a sign that says hello world"
|
51 |
+
>>> image = pipe(prompt).images[0]
|
52 |
+
>>> image.save("sd3.png")
|
53 |
+
```
|
54 |
+
"""
|
55 |
+
|
56 |
+
T5_PRECISION = torch.float16
|
57 |
+
|
58 |
+
"""
|
59 |
+
Based on FluxPipeline with several changes:
|
60 |
+
- no pooled embeddings
|
61 |
+
- We use zero padding for prompts
|
62 |
+
- No guidance embedding since this is not a distilled version
|
63 |
+
"""
|
64 |
+
class BriaPipeline(FluxPipeline):
|
65 |
+
r"""
|
66 |
+
Args:
|
67 |
+
transformer ([`SD3Transformer2DModel`]):
|
68 |
+
Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
|
69 |
+
scheduler ([`FlowMatchEulerDiscreteScheduler`]):
|
70 |
+
A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
|
71 |
+
vae ([`AutoencoderKL`]):
|
72 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
73 |
+
text_encoder ([`T5EncoderModel`]):
|
74 |
+
Frozen text-encoder. Stable Diffusion 3 uses
|
75 |
+
[T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the
|
76 |
+
[t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
|
77 |
+
tokenizer (`T5TokenizerFast`):
|
78 |
+
Tokenizer of class
|
79 |
+
[T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer).
|
80 |
+
"""
|
81 |
+
|
82 |
+
def __init__(
|
83 |
+
self,
|
84 |
+
transformer: BriaTransformer2DModel,
|
85 |
+
scheduler: Union[FlowMatchEulerDiscreteScheduler,KarrasDiffusionSchedulers],
|
86 |
+
vae: AutoencoderKL,
|
87 |
+
text_encoder: T5EncoderModel,
|
88 |
+
tokenizer: T5TokenizerFast
|
89 |
+
):
|
90 |
+
self.register_modules(
|
91 |
+
vae=vae,
|
92 |
+
text_encoder=text_encoder,
|
93 |
+
tokenizer=tokenizer,
|
94 |
+
transformer=transformer,
|
95 |
+
scheduler=scheduler,
|
96 |
+
)
|
97 |
+
|
98 |
+
# TODO - why different than offical flux (-1)
|
99 |
+
self.vae_scale_factor = (
|
100 |
+
2 ** (len(self.vae.config.block_out_channels)) if hasattr(self, "vae") and self.vae is not None else 16
|
101 |
+
)
|
102 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
103 |
+
self.default_sample_size = 64 # due to patchify=> 128,128 => res of 1k,1k
|
104 |
+
|
105 |
+
# T5 is senstive to precision so we use the precision used for precompute and cast as needed
|
106 |
+
self.text_encoder = self.text_encoder.to(dtype=T5_PRECISION)
|
107 |
+
for block in self.text_encoder.encoder.block:
|
108 |
+
block.layer[-1].DenseReluDense.wo.to(dtype=torch.float32)
|
109 |
+
|
110 |
+
def encode_prompt(
|
111 |
+
self,
|
112 |
+
prompt: Union[str, List[str]],
|
113 |
+
device: Optional[torch.device] = None,
|
114 |
+
num_images_per_prompt: int = 1,
|
115 |
+
do_classifier_free_guidance: bool = True,
|
116 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
117 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
118 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
119 |
+
max_sequence_length: int = 128,
|
120 |
+
lora_scale: Optional[float] = None,
|
121 |
+
):
|
122 |
+
r"""
|
123 |
+
|
124 |
+
Args:
|
125 |
+
prompt (`str` or `List[str]`, *optional*):
|
126 |
+
prompt to be encoded
|
127 |
+
device: (`torch.device`):
|
128 |
+
torch device
|
129 |
+
num_images_per_prompt (`int`):
|
130 |
+
number of images that should be generated per prompt
|
131 |
+
do_classifier_free_guidance (`bool`):
|
132 |
+
whether to use classifier free guidance or not
|
133 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
134 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
135 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
136 |
+
less than `1`).
|
137 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
138 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
139 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
140 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
141 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
142 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
143 |
+
argument.
|
144 |
+
"""
|
145 |
+
device = device or self._execution_device
|
146 |
+
|
147 |
+
# set lora scale so that monkey patched LoRA
|
148 |
+
# function of text encoder can correctly access it
|
149 |
+
if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin):
|
150 |
+
self._lora_scale = lora_scale
|
151 |
+
|
152 |
+
# dynamically adjust the LoRA scale
|
153 |
+
if self.text_encoder is not None and USE_PEFT_BACKEND:
|
154 |
+
scale_lora_layers(self.text_encoder, lora_scale)
|
155 |
+
|
156 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
157 |
+
if prompt is not None:
|
158 |
+
batch_size = len(prompt)
|
159 |
+
else:
|
160 |
+
batch_size = prompt_embeds.shape[0]
|
161 |
+
|
162 |
+
if prompt_embeds is None:
|
163 |
+
prompt_embeds = get_t5_prompt_embeds(
|
164 |
+
self.tokenizer,
|
165 |
+
self.text_encoder,
|
166 |
+
prompt=prompt,
|
167 |
+
num_images_per_prompt=num_images_per_prompt,
|
168 |
+
max_sequence_length=max_sequence_length,
|
169 |
+
device=device,
|
170 |
+
).to(dtype=self.transformer.dtype)
|
171 |
+
|
172 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
173 |
+
if not is_ng_none(negative_prompt):
|
174 |
+
negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
|
175 |
+
|
176 |
+
if prompt is not None and type(prompt) is not type(negative_prompt):
|
177 |
+
raise TypeError(
|
178 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
179 |
+
f" {type(prompt)}."
|
180 |
+
)
|
181 |
+
elif batch_size != len(negative_prompt):
|
182 |
+
raise ValueError(
|
183 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
184 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
185 |
+
" the batch size of `prompt`."
|
186 |
+
)
|
187 |
+
|
188 |
+
negative_prompt_embeds = get_t5_prompt_embeds(
|
189 |
+
self.tokenizer,
|
190 |
+
self.text_encoder,
|
191 |
+
prompt=negative_prompt,
|
192 |
+
num_images_per_prompt=num_images_per_prompt,
|
193 |
+
max_sequence_length=max_sequence_length,
|
194 |
+
device=device,
|
195 |
+
).to(dtype=self.transformer.dtype)
|
196 |
+
else:
|
197 |
+
negative_prompt_embeds = torch.zeros_like(prompt_embeds)
|
198 |
+
|
199 |
+
if self.text_encoder is not None:
|
200 |
+
if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
|
201 |
+
# Retrieve the original scale by scaling back the LoRA layers
|
202 |
+
unscale_lora_layers(self.text_encoder, lora_scale)
|
203 |
+
|
204 |
+
dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype
|
205 |
+
text_ids = torch.zeros(batch_size, prompt_embeds.shape[1], 3).to(device=device, dtype=dtype)
|
206 |
+
text_ids = text_ids.repeat(num_images_per_prompt, 1, 1)
|
207 |
+
|
208 |
+
return prompt_embeds, negative_prompt_embeds, text_ids
|
209 |
+
|
210 |
+
@property
|
211 |
+
def guidance_scale(self):
|
212 |
+
return self._guidance_scale
|
213 |
+
|
214 |
+
|
215 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
216 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
217 |
+
# corresponds to doing no classifier free guidance.
|
218 |
+
@property
|
219 |
+
def do_classifier_free_guidance(self):
|
220 |
+
return self._guidance_scale > 1
|
221 |
+
|
222 |
+
@property
|
223 |
+
def joint_attention_kwargs(self):
|
224 |
+
return self._joint_attention_kwargs
|
225 |
+
|
226 |
+
@property
|
227 |
+
def num_timesteps(self):
|
228 |
+
return self._num_timesteps
|
229 |
+
|
230 |
+
@property
|
231 |
+
def interrupt(self):
|
232 |
+
return self._interrupt
|
233 |
+
|
234 |
+
@torch.no_grad()
|
235 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
236 |
+
def __call__(
|
237 |
+
self,
|
238 |
+
prompt: Union[str, List[str]] = None,
|
239 |
+
height: Optional[int] = None,
|
240 |
+
width: Optional[int] = None,
|
241 |
+
num_inference_steps: int = 30,
|
242 |
+
timesteps: List[int] = None,
|
243 |
+
guidance_scale: float = 5,
|
244 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
245 |
+
num_images_per_prompt: Optional[int] = 1,
|
246 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
247 |
+
latents: Optional[torch.FloatTensor] = None,
|
248 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
249 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
250 |
+
output_type: Optional[str] = "pil",
|
251 |
+
return_dict: bool = True,
|
252 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
253 |
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
254 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
255 |
+
max_sequence_length: int = 128,
|
256 |
+
clip_value:Union[None,float] = None,
|
257 |
+
normalize:bool = False,
|
258 |
+
):
|
259 |
+
r"""
|
260 |
+
Function invoked when calling the pipeline for generation.
|
261 |
+
|
262 |
+
Args:
|
263 |
+
prompt (`str` or `List[str]`, *optional*):
|
264 |
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
265 |
+
instead.
|
266 |
+
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
267 |
+
The height in pixels of the generated image. This is set to 1024 by default for the best results.
|
268 |
+
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
269 |
+
The width in pixels of the generated image. This is set to 1024 by default for the best results.
|
270 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
271 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
272 |
+
expense of slower inference.
|
273 |
+
timesteps (`List[int]`, *optional*):
|
274 |
+
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
275 |
+
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
276 |
+
passed will be used. Must be in descending order.
|
277 |
+
guidance_scale (`float`, *optional*, defaults to 5.0):
|
278 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
279 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
280 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
281 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
282 |
+
usually at the expense of lower image quality.
|
283 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
284 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
285 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
286 |
+
less than `1`).
|
287 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
288 |
+
The number of images to generate per prompt.
|
289 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
290 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
291 |
+
to make generation deterministic.
|
292 |
+
latents (`torch.FloatTensor`, *optional*):
|
293 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
294 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
295 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
296 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
297 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
298 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
299 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
300 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
301 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
302 |
+
argument.
|
303 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
304 |
+
The output format of the generate image. Choose between
|
305 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
306 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
307 |
+
Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
|
308 |
+
of a plain tuple.
|
309 |
+
joint_attention_kwargs (`dict`, *optional*):
|
310 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
311 |
+
`self.processor` in
|
312 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
313 |
+
callback_on_step_end (`Callable`, *optional*):
|
314 |
+
A function that calls at the end of each denoising steps during the inference. The function is called
|
315 |
+
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
316 |
+
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
317 |
+
`callback_on_step_end_tensor_inputs`.
|
318 |
+
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
319 |
+
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
320 |
+
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
321 |
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
322 |
+
max_sequence_length (`int` defaults to 256): Maximum sequence length to use with the `prompt`.
|
323 |
+
|
324 |
+
Examples:
|
325 |
+
|
326 |
+
Returns:
|
327 |
+
[`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict`
|
328 |
+
is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated
|
329 |
+
images.
|
330 |
+
"""
|
331 |
+
|
332 |
+
height = height or self.default_sample_size * self.vae_scale_factor
|
333 |
+
width = width or self.default_sample_size * self.vae_scale_factor
|
334 |
+
|
335 |
+
# 1. Check inputs. Raise error if not correct
|
336 |
+
self.check_inputs(
|
337 |
+
prompt=prompt,
|
338 |
+
height=height,
|
339 |
+
width=width,
|
340 |
+
prompt_embeds=prompt_embeds,
|
341 |
+
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
|
342 |
+
max_sequence_length=max_sequence_length,
|
343 |
+
)
|
344 |
+
|
345 |
+
self._guidance_scale = guidance_scale
|
346 |
+
self._joint_attention_kwargs = joint_attention_kwargs
|
347 |
+
self._interrupt = False
|
348 |
+
|
349 |
+
# 2. Define call parameters
|
350 |
+
if prompt is not None and isinstance(prompt, str):
|
351 |
+
batch_size = 1
|
352 |
+
elif prompt is not None and isinstance(prompt, list):
|
353 |
+
batch_size = len(prompt)
|
354 |
+
else:
|
355 |
+
batch_size = prompt_embeds.shape[0]
|
356 |
+
|
357 |
+
device = self._execution_device
|
358 |
+
|
359 |
+
lora_scale = (
|
360 |
+
self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
|
361 |
+
)
|
362 |
+
|
363 |
+
(
|
364 |
+
prompt_embeds,
|
365 |
+
negative_prompt_embeds,
|
366 |
+
text_ids
|
367 |
+
) = self.encode_prompt(
|
368 |
+
prompt=prompt,
|
369 |
+
negative_prompt=negative_prompt,
|
370 |
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
371 |
+
prompt_embeds=prompt_embeds,
|
372 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
373 |
+
device=device,
|
374 |
+
num_images_per_prompt=num_images_per_prompt,
|
375 |
+
max_sequence_length=max_sequence_length,
|
376 |
+
lora_scale=lora_scale,
|
377 |
+
)
|
378 |
+
|
379 |
+
if self.do_classifier_free_guidance:
|
380 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
381 |
+
|
382 |
+
|
383 |
+
|
384 |
+
# 5. Prepare latent variables
|
385 |
+
num_channels_latents = self.transformer.config.in_channels // 4 # due to patch=2, we devide by 4
|
386 |
+
latents, latent_image_ids = self.prepare_latents(
|
387 |
+
batch_size * num_images_per_prompt,
|
388 |
+
num_channels_latents,
|
389 |
+
height,
|
390 |
+
width,
|
391 |
+
prompt_embeds.dtype,
|
392 |
+
device,
|
393 |
+
generator,
|
394 |
+
latents,
|
395 |
+
)
|
396 |
+
|
397 |
+
if isinstance(self.scheduler,FlowMatchEulerDiscreteScheduler) and self.scheduler.config['use_dynamic_shifting']:
|
398 |
+
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
|
399 |
+
image_seq_len = latents.shape[1] # Shift by height - Why just height?
|
400 |
+
print(f"Using dynamic shift in pipeline with sequence length {image_seq_len}")
|
401 |
+
|
402 |
+
mu = calculate_shift(
|
403 |
+
image_seq_len,
|
404 |
+
self.scheduler.config.base_image_seq_len,
|
405 |
+
self.scheduler.config.max_image_seq_len,
|
406 |
+
self.scheduler.config.base_shift,
|
407 |
+
self.scheduler.config.max_shift,
|
408 |
+
)
|
409 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
410 |
+
self.scheduler,
|
411 |
+
num_inference_steps,
|
412 |
+
device,
|
413 |
+
timesteps,
|
414 |
+
sigmas,
|
415 |
+
mu=mu,
|
416 |
+
)
|
417 |
+
else:
|
418 |
+
# 4. Prepare timesteps
|
419 |
+
# Sample from training sigmas
|
420 |
+
if isinstance(self.scheduler,DDIMScheduler) or isinstance(self.scheduler,EulerAncestralDiscreteScheduler):
|
421 |
+
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, None, None)
|
422 |
+
else:
|
423 |
+
sigmas = get_original_sigmas(num_train_timesteps=self.scheduler.config.num_train_timesteps,num_inference_steps=num_inference_steps)
|
424 |
+
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps,sigmas=sigmas)
|
425 |
+
|
426 |
+
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
427 |
+
self._num_timesteps = len(timesteps)
|
428 |
+
|
429 |
+
# Supprot different diffusers versions
|
430 |
+
if len(latent_image_ids.shape)==2:
|
431 |
+
text_ids=text_ids.squeeze()
|
432 |
+
|
433 |
+
# 6. Denoising loop
|
434 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
435 |
+
for i, t in enumerate(timesteps):
|
436 |
+
if self.interrupt:
|
437 |
+
continue
|
438 |
+
|
439 |
+
# expand the latents if we are doing classifier free guidance
|
440 |
+
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
441 |
+
if type(self.scheduler)!=FlowMatchEulerDiscreteScheduler:
|
442 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
443 |
+
|
444 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
445 |
+
timestep = t.expand(latent_model_input.shape[0])
|
446 |
+
|
447 |
+
# This is predicts "v" from flow-matching or eps from diffusion
|
448 |
+
noise_pred = self.transformer(
|
449 |
+
hidden_states=latent_model_input,
|
450 |
+
timestep=timestep,
|
451 |
+
encoder_hidden_states=prompt_embeds,
|
452 |
+
joint_attention_kwargs=self.joint_attention_kwargs,
|
453 |
+
return_dict=False,
|
454 |
+
txt_ids=text_ids,
|
455 |
+
img_ids=latent_image_ids,
|
456 |
+
)[0]
|
457 |
+
|
458 |
+
# perform guidance
|
459 |
+
if self.do_classifier_free_guidance:
|
460 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
461 |
+
cfg_noise_pred_text = noise_pred_text.std()
|
462 |
+
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
|
463 |
+
|
464 |
+
if normalize:
|
465 |
+
noise_pred = noise_pred * (0.7 *(cfg_noise_pred_text/noise_pred.std())) + 0.3 * noise_pred
|
466 |
+
|
467 |
+
if clip_value:
|
468 |
+
assert clip_value>0
|
469 |
+
noise_pred = noise_pred.clip(-clip_value,clip_value)
|
470 |
+
|
471 |
+
# compute the previous noisy sample x_t -> x_t-1
|
472 |
+
latents_dtype = latents.dtype
|
473 |
+
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
474 |
+
|
475 |
+
if latents.dtype != latents_dtype:
|
476 |
+
if torch.backends.mps.is_available():
|
477 |
+
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
478 |
+
latents = latents.to(latents_dtype)
|
479 |
+
|
480 |
+
if callback_on_step_end is not None:
|
481 |
+
callback_kwargs = {}
|
482 |
+
for k in callback_on_step_end_tensor_inputs:
|
483 |
+
callback_kwargs[k] = locals()[k]
|
484 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
485 |
+
|
486 |
+
latents = callback_outputs.pop("latents", latents)
|
487 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
488 |
+
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
489 |
+
|
490 |
+
# call the callback, if provided
|
491 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
492 |
+
progress_bar.update()
|
493 |
+
|
494 |
+
if XLA_AVAILABLE:
|
495 |
+
xm.mark_step()
|
496 |
+
|
497 |
+
if output_type == "latent":
|
498 |
+
image = latents
|
499 |
+
|
500 |
+
else:
|
501 |
+
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
|
502 |
+
latents = (latents.to(dtype=torch.float32) / self.vae.config.scaling_factor) + self.vae.config.shift_factor
|
503 |
+
image = self.vae.decode(latents.to(dtype=self.vae.dtype), return_dict=False)[0]
|
504 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
505 |
+
|
506 |
+
# Offload all models
|
507 |
+
self.maybe_free_model_hooks()
|
508 |
+
|
509 |
+
if not return_dict:
|
510 |
+
return (image,)
|
511 |
+
|
512 |
+
return FluxPipelineOutput(images=image)
|
513 |
+
|
514 |
+
def check_inputs(
|
515 |
+
self,
|
516 |
+
prompt,
|
517 |
+
height,
|
518 |
+
width,
|
519 |
+
negative_prompt=None,
|
520 |
+
prompt_embeds=None,
|
521 |
+
negative_prompt_embeds=None,
|
522 |
+
callback_on_step_end_tensor_inputs=None,
|
523 |
+
max_sequence_length=None,
|
524 |
+
):
|
525 |
+
if height % 8 != 0 or width % 8 != 0:
|
526 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
527 |
+
|
528 |
+
if callback_on_step_end_tensor_inputs is not None and not all(
|
529 |
+
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
530 |
+
):
|
531 |
+
raise ValueError(
|
532 |
+
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
533 |
+
)
|
534 |
+
|
535 |
+
if prompt is not None and prompt_embeds is not None:
|
536 |
+
raise ValueError(
|
537 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
538 |
+
" only forward one of the two."
|
539 |
+
)
|
540 |
+
elif prompt is None and prompt_embeds is None:
|
541 |
+
raise ValueError(
|
542 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
543 |
+
)
|
544 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
545 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
546 |
+
|
547 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
548 |
+
raise ValueError(
|
549 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
550 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
551 |
+
)
|
552 |
+
|
553 |
+
|
554 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
555 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
556 |
+
raise ValueError(
|
557 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
558 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
559 |
+
f" {negative_prompt_embeds.shape}."
|
560 |
+
)
|
561 |
+
|
562 |
+
if max_sequence_length is not None and max_sequence_length > 512:
|
563 |
+
raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}")
|
564 |
+
|
565 |
+
def to(self, *args, **kwargs):
|
566 |
+
DiffusionPipeline.to(self, *args, **kwargs)
|
567 |
+
# T5 is senstive to precision so we use the precision used for precompute and cast as needed
|
568 |
+
self.text_encoder = self.text_encoder.to(dtype=T5_PRECISION)
|
569 |
+
for block in self.text_encoder.encoder.block:
|
570 |
+
block.layer[-1].DenseReluDense.wo.to(dtype=torch.float32)
|
571 |
+
|
572 |
+
return self
|
573 |
+
|
574 |
+
|
575 |
+
|
576 |
+
|
pipeline_bria_controlnet.py
ADDED
@@ -0,0 +1,532 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 Stability AI and The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from typing import Any, Callable, Dict, List, Optional, Union
|
16 |
+
import torch
|
17 |
+
from transformers import (
|
18 |
+
T5EncoderModel,
|
19 |
+
T5TokenizerFast,
|
20 |
+
)
|
21 |
+
from diffusers.image_processor import PipelineImageInput
|
22 |
+
|
23 |
+
from diffusers import AutoencoderKL # Waiting for diffusers udpdate
|
24 |
+
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
|
25 |
+
from diffusers.schedulers import KarrasDiffusionSchedulers
|
26 |
+
from diffusers.utils import logging
|
27 |
+
from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput
|
28 |
+
from diffusers.pipelines.flux.pipeline_flux import retrieve_timesteps
|
29 |
+
from .controlnet_bria import BriaControlNetModel, BriaMultiControlNetModel
|
30 |
+
|
31 |
+
from .pipeline_bria import BriaPipeline
|
32 |
+
from transformer_bria import BriaTransformer2DModel
|
33 |
+
from bria_utils import get_original_sigmas
|
34 |
+
|
35 |
+
XLA_AVAILABLE = False
|
36 |
+
|
37 |
+
|
38 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
39 |
+
|
40 |
+
|
41 |
+
class BriaControlNetPipeline(BriaPipeline):
|
42 |
+
r"""
|
43 |
+
Args:
|
44 |
+
transformer ([`SD3Transformer2DModel`]):
|
45 |
+
Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
|
46 |
+
scheduler ([`FlowMatchEulerDiscreteScheduler`]):
|
47 |
+
A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
|
48 |
+
vae ([`AutoencoderKL`]):
|
49 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
50 |
+
text_encoder ([`T5EncoderModel`]):
|
51 |
+
Frozen text-encoder. Stable Diffusion 3 uses
|
52 |
+
[T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the
|
53 |
+
[t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
|
54 |
+
tokenizer (`T5TokenizerFast`):
|
55 |
+
Tokenizer of class
|
56 |
+
[T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer).
|
57 |
+
"""
|
58 |
+
|
59 |
+
model_cpu_offload_seq = "text_encoder->text_encoder_2->text_encoder->transformer->vae"
|
60 |
+
_optional_components = []
|
61 |
+
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds", "negative_pooled_prompt_embeds"]
|
62 |
+
|
63 |
+
def __init__( # EYAL - removed clip text encoder + tokenizer
|
64 |
+
self,
|
65 |
+
transformer: BriaTransformer2DModel,
|
66 |
+
scheduler: Union[FlowMatchEulerDiscreteScheduler, KarrasDiffusionSchedulers],
|
67 |
+
vae: AutoencoderKL,
|
68 |
+
text_encoder: T5EncoderModel,
|
69 |
+
tokenizer: T5TokenizerFast,
|
70 |
+
controlnet: BriaControlNetModel,
|
71 |
+
):
|
72 |
+
super().__init__(
|
73 |
+
transformer=transformer, scheduler=scheduler, vae=vae, text_encoder=text_encoder, tokenizer=tokenizer
|
74 |
+
)
|
75 |
+
self.register_modules(controlnet=controlnet)
|
76 |
+
|
77 |
+
def prepare_image(
|
78 |
+
self,
|
79 |
+
image,
|
80 |
+
width,
|
81 |
+
height,
|
82 |
+
batch_size,
|
83 |
+
num_images_per_prompt,
|
84 |
+
device,
|
85 |
+
dtype,
|
86 |
+
do_classifier_free_guidance=False,
|
87 |
+
guess_mode=False,
|
88 |
+
):
|
89 |
+
if isinstance(image, torch.Tensor):
|
90 |
+
pass
|
91 |
+
else:
|
92 |
+
image = self.image_processor.preprocess(image, height=height, width=width)
|
93 |
+
|
94 |
+
image_batch_size = image.shape[0]
|
95 |
+
|
96 |
+
if image_batch_size == 1:
|
97 |
+
repeat_by = batch_size
|
98 |
+
else:
|
99 |
+
# image batch size is the same as prompt batch size
|
100 |
+
repeat_by = num_images_per_prompt
|
101 |
+
|
102 |
+
image = image.repeat_interleave(repeat_by, dim=0)
|
103 |
+
|
104 |
+
image = image.to(device=device, dtype=dtype)
|
105 |
+
|
106 |
+
if do_classifier_free_guidance and not guess_mode:
|
107 |
+
image = torch.cat([image] * 2)
|
108 |
+
|
109 |
+
return image
|
110 |
+
|
111 |
+
def prepare_control(self, control_image, width, height, batch_size, num_images_per_prompt, device, control_mode):
|
112 |
+
num_channels_latents = self.transformer.config.in_channels // 4
|
113 |
+
control_image = self.prepare_image(
|
114 |
+
image=control_image,
|
115 |
+
width=width,
|
116 |
+
height=height,
|
117 |
+
batch_size=batch_size * num_images_per_prompt,
|
118 |
+
num_images_per_prompt=num_images_per_prompt,
|
119 |
+
device=device,
|
120 |
+
dtype=self.vae.dtype,
|
121 |
+
)
|
122 |
+
height, width = control_image.shape[-2:]
|
123 |
+
|
124 |
+
# vae encode
|
125 |
+
control_image = self.vae.encode(control_image).latent_dist.sample()
|
126 |
+
control_image = (control_image - self.vae.config.shift_factor) * self.vae.config.scaling_factor
|
127 |
+
|
128 |
+
# pack
|
129 |
+
height_control_image, width_control_image = control_image.shape[2:]
|
130 |
+
control_image = self._pack_latents(
|
131 |
+
control_image,
|
132 |
+
batch_size * num_images_per_prompt,
|
133 |
+
num_channels_latents,
|
134 |
+
height_control_image,
|
135 |
+
width_control_image,
|
136 |
+
)
|
137 |
+
|
138 |
+
# Here we ensure that `control_mode` has the same length as the control_image.
|
139 |
+
if control_mode is not None:
|
140 |
+
if not isinstance(control_mode, int):
|
141 |
+
raise ValueError(" For `BriaControlNet`, `control_mode` should be an `int` or `None`")
|
142 |
+
control_mode = torch.tensor(control_mode).to(device, dtype=torch.long)
|
143 |
+
control_mode = control_mode.view(-1, 1).expand(control_image.shape[0], 1)
|
144 |
+
|
145 |
+
return control_image, control_mode
|
146 |
+
|
147 |
+
def prepare_multi_control(self, control_image, width, height, batch_size, num_images_per_prompt, device, control_mode):
|
148 |
+
num_channels_latents = self.transformer.config.in_channels // 4
|
149 |
+
control_images = []
|
150 |
+
for i, control_image_ in enumerate(control_image):
|
151 |
+
control_image_ = self.prepare_image(
|
152 |
+
image=control_image_,
|
153 |
+
width=width,
|
154 |
+
height=height,
|
155 |
+
batch_size=batch_size * num_images_per_prompt,
|
156 |
+
num_images_per_prompt=num_images_per_prompt,
|
157 |
+
device=device,
|
158 |
+
dtype=self.vae.dtype,
|
159 |
+
)
|
160 |
+
height, width = control_image_.shape[-2:]
|
161 |
+
|
162 |
+
# vae encode
|
163 |
+
control_image_ = self.vae.encode(control_image_).latent_dist.sample()
|
164 |
+
control_image_ = (control_image_ - self.vae.config.shift_factor) * self.vae.config.scaling_factor
|
165 |
+
|
166 |
+
# pack
|
167 |
+
height_control_image, width_control_image = control_image_.shape[2:]
|
168 |
+
control_image_ = self._pack_latents(
|
169 |
+
control_image_,
|
170 |
+
batch_size * num_images_per_prompt,
|
171 |
+
num_channels_latents,
|
172 |
+
height_control_image,
|
173 |
+
width_control_image,
|
174 |
+
)
|
175 |
+
control_images.append(control_image_)
|
176 |
+
|
177 |
+
control_image = control_images
|
178 |
+
|
179 |
+
# Here we ensure that `control_mode` has the same length as the control_image.
|
180 |
+
if isinstance(control_mode, list) and len(control_mode) != len(control_image):
|
181 |
+
raise ValueError(
|
182 |
+
"For Multi-ControlNet, `control_mode` must be a list of the same "
|
183 |
+
+ " length as the number of controlnets (control images) specified"
|
184 |
+
)
|
185 |
+
if not isinstance(control_mode, list):
|
186 |
+
control_mode = [control_mode] * len(control_image)
|
187 |
+
# set control mode
|
188 |
+
control_modes = []
|
189 |
+
for cmode in control_mode:
|
190 |
+
if cmode is None:
|
191 |
+
cmode = -1
|
192 |
+
control_mode = torch.tensor(cmode).expand(control_images[0].shape[0]).to(device, dtype=torch.long)
|
193 |
+
control_modes.append(control_mode)
|
194 |
+
control_mode = control_modes
|
195 |
+
|
196 |
+
return control_image, control_mode
|
197 |
+
|
198 |
+
def get_controlnet_keep(self, timesteps, control_guidance_start, control_guidance_end):
|
199 |
+
controlnet_keep = []
|
200 |
+
for i in range(len(timesteps)):
|
201 |
+
keeps = [
|
202 |
+
1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
|
203 |
+
for s, e in zip(control_guidance_start, control_guidance_end)
|
204 |
+
]
|
205 |
+
controlnet_keep.append(keeps[0] if isinstance(self.controlnet, BriaControlNetModel) else keeps)
|
206 |
+
return controlnet_keep
|
207 |
+
|
208 |
+
def get_control_start_end(self, control_guidance_start, control_guidance_end):
|
209 |
+
if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
|
210 |
+
control_guidance_start = len(control_guidance_end) * [control_guidance_start]
|
211 |
+
elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
|
212 |
+
control_guidance_end = len(control_guidance_start) * [control_guidance_end]
|
213 |
+
elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
|
214 |
+
mult = 1 # TODO - why is this 1?
|
215 |
+
control_guidance_start, control_guidance_end = (
|
216 |
+
mult * [control_guidance_start],
|
217 |
+
mult * [control_guidance_end],
|
218 |
+
)
|
219 |
+
|
220 |
+
return control_guidance_start, control_guidance_end
|
221 |
+
|
222 |
+
@torch.no_grad()
|
223 |
+
def __call__(
|
224 |
+
self,
|
225 |
+
prompt: Union[str, List[str]] = None,
|
226 |
+
height: Optional[int] = None,
|
227 |
+
width: Optional[int] = None,
|
228 |
+
num_inference_steps: int = 30,
|
229 |
+
timesteps: List[int] = None,
|
230 |
+
guidance_scale: float = 3.5,
|
231 |
+
control_guidance_start: Union[float, List[float]] = 0.0,
|
232 |
+
control_guidance_end: Union[float, List[float]] = 1.0,
|
233 |
+
control_image: Optional[PipelineImageInput] = None,
|
234 |
+
control_mode: Optional[Union[int, List[int]]] = None,
|
235 |
+
controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
|
236 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
237 |
+
num_images_per_prompt: Optional[int] = 1,
|
238 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
239 |
+
latents: Optional[torch.FloatTensor] = None,
|
240 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
241 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
242 |
+
output_type: Optional[str] = "pil",
|
243 |
+
return_dict: bool = True,
|
244 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
245 |
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
246 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
247 |
+
max_sequence_length: int = 128,
|
248 |
+
):
|
249 |
+
r"""
|
250 |
+
Function invoked when calling the pipeline for generation.
|
251 |
+
|
252 |
+
Args:
|
253 |
+
prompt (`str` or `List[str]`, *optional*):
|
254 |
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
255 |
+
instead.
|
256 |
+
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
257 |
+
The height in pixels of the generated image. This is set to 1024 by default for the best results.
|
258 |
+
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
259 |
+
The width in pixels of the generated image. This is set to 1024 by default for the best results.
|
260 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
261 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
262 |
+
expense of slower inference.
|
263 |
+
timesteps (`List[int]`, *optional*):
|
264 |
+
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
265 |
+
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
266 |
+
passed will be used. Must be in descending order.
|
267 |
+
guidance_scale (`float`, *optional*, defaults to 5.0):
|
268 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
269 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
270 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
271 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
272 |
+
usually at the expense of lower image quality.
|
273 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
274 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
275 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
276 |
+
less than `1`).
|
277 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
278 |
+
The number of images to generate per prompt.
|
279 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
280 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
281 |
+
to make generation deterministic.
|
282 |
+
latents (`torch.FloatTensor`, *optional*):
|
283 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
284 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
285 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
286 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
287 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
288 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
289 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
290 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
291 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
292 |
+
argument.
|
293 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
294 |
+
The output format of the generate image. Choose between
|
295 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
296 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
297 |
+
Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
|
298 |
+
of a plain tuple.
|
299 |
+
joint_attention_kwargs (`dict`, *optional*):
|
300 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
301 |
+
`self.processor` in
|
302 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
303 |
+
callback_on_step_end (`Callable`, *optional*):
|
304 |
+
A function that calls at the end of each denoising steps during the inference. The function is called
|
305 |
+
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
306 |
+
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
307 |
+
`callback_on_step_end_tensor_inputs`.
|
308 |
+
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
309 |
+
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
310 |
+
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
311 |
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
312 |
+
max_sequence_length (`int` defaults to 256): Maximum sequence length to use with the `prompt`.
|
313 |
+
|
314 |
+
Examples:
|
315 |
+
|
316 |
+
Returns:
|
317 |
+
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] or `tuple`:
|
318 |
+
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a
|
319 |
+
`tuple`. When returning a tuple, the first element is a list with the generated images.
|
320 |
+
"""
|
321 |
+
|
322 |
+
height = height or self.default_sample_size * self.vae_scale_factor
|
323 |
+
width = width or self.default_sample_size * self.vae_scale_factor
|
324 |
+
control_guidance_start, control_guidance_end = self.get_control_start_end(
|
325 |
+
control_guidance_start=control_guidance_start, control_guidance_end=control_guidance_end
|
326 |
+
)
|
327 |
+
|
328 |
+
# 1. Check inputs. Raise error if not correct
|
329 |
+
self.check_inputs(
|
330 |
+
prompt,
|
331 |
+
height,
|
332 |
+
width,
|
333 |
+
negative_prompt=negative_prompt,
|
334 |
+
prompt_embeds=prompt_embeds,
|
335 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
336 |
+
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
|
337 |
+
max_sequence_length=max_sequence_length,
|
338 |
+
)
|
339 |
+
|
340 |
+
self._guidance_scale = guidance_scale
|
341 |
+
self._joint_attention_kwargs = joint_attention_kwargs
|
342 |
+
self._interrupt = False
|
343 |
+
|
344 |
+
# 2. Define call parameters
|
345 |
+
if prompt is not None and isinstance(prompt, str):
|
346 |
+
batch_size = 1
|
347 |
+
elif prompt is not None and isinstance(prompt, list):
|
348 |
+
batch_size = len(prompt)
|
349 |
+
else:
|
350 |
+
batch_size = prompt_embeds.shape[0]
|
351 |
+
|
352 |
+
device = self._execution_device
|
353 |
+
|
354 |
+
lora_scale = self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
|
355 |
+
|
356 |
+
(prompt_embeds, negative_prompt_embeds, text_ids) = self.encode_prompt(
|
357 |
+
prompt=prompt,
|
358 |
+
negative_prompt=negative_prompt,
|
359 |
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
360 |
+
prompt_embeds=prompt_embeds,
|
361 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
362 |
+
device=device,
|
363 |
+
num_images_per_prompt=num_images_per_prompt,
|
364 |
+
max_sequence_length=max_sequence_length,
|
365 |
+
lora_scale=lora_scale,
|
366 |
+
)
|
367 |
+
|
368 |
+
if self.do_classifier_free_guidance:
|
369 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
370 |
+
|
371 |
+
# 3. Prepare control image
|
372 |
+
if control_image is not None:
|
373 |
+
if isinstance(self.controlnet, BriaControlNetModel):
|
374 |
+
control_image, control_mode = self.prepare_control(
|
375 |
+
control_image=control_image,
|
376 |
+
width=width,
|
377 |
+
height=height,
|
378 |
+
batch_size=batch_size,
|
379 |
+
num_images_per_prompt=num_images_per_prompt,
|
380 |
+
device=device,
|
381 |
+
control_mode=control_mode,
|
382 |
+
)
|
383 |
+
elif isinstance(self.controlnet, BriaMultiControlNetModel):
|
384 |
+
control_image, control_mode = self.prepare_multi_control(
|
385 |
+
control_image=control_image,
|
386 |
+
width=width,
|
387 |
+
height=height,
|
388 |
+
batch_size=batch_size,
|
389 |
+
num_images_per_prompt=num_images_per_prompt,
|
390 |
+
device=device,
|
391 |
+
control_mode=control_mode,
|
392 |
+
)
|
393 |
+
|
394 |
+
# 4. Prepare timesteps
|
395 |
+
# Sample from training sigmas
|
396 |
+
sigmas = get_original_sigmas(
|
397 |
+
num_train_timesteps=self.scheduler.config.num_train_timesteps, num_inference_steps=num_inference_steps
|
398 |
+
)
|
399 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
400 |
+
self.scheduler, num_inference_steps, device, timesteps, sigmas=sigmas
|
401 |
+
)
|
402 |
+
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
403 |
+
self._num_timesteps = len(timesteps)
|
404 |
+
|
405 |
+
# 5. Prepare latent variables
|
406 |
+
num_channels_latents = self.transformer.config.in_channels // 4 # due to patch=2, we devide by 4
|
407 |
+
latents, latent_image_ids = self.prepare_latents(
|
408 |
+
batch_size=batch_size * num_images_per_prompt,
|
409 |
+
num_channels_latents=num_channels_latents,
|
410 |
+
height=height,
|
411 |
+
width=width,
|
412 |
+
dtype=prompt_embeds.dtype,
|
413 |
+
device=device,
|
414 |
+
generator=generator,
|
415 |
+
latents=latents,
|
416 |
+
)
|
417 |
+
|
418 |
+
# 6. Create tensor stating which controlnets to keep
|
419 |
+
if control_image is not None:
|
420 |
+
controlnet_keep = self.get_controlnet_keep(
|
421 |
+
timesteps=timesteps,
|
422 |
+
control_guidance_start=control_guidance_start,
|
423 |
+
control_guidance_end=control_guidance_end,
|
424 |
+
)
|
425 |
+
|
426 |
+
# EYAL - added the CFG loop
|
427 |
+
# 7. Denoising loop
|
428 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
429 |
+
for i, t in enumerate(timesteps):
|
430 |
+
if self.interrupt:
|
431 |
+
continue
|
432 |
+
|
433 |
+
# expand the latents if we are doing classifier free guidance
|
434 |
+
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
435 |
+
# if type(self.scheduler) != FlowMatchEulerDiscreteScheduler:
|
436 |
+
if not isinstance(self.scheduler, FlowMatchEulerDiscreteScheduler):
|
437 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
438 |
+
|
439 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
440 |
+
timestep = t.expand(latent_model_input.shape[0])
|
441 |
+
|
442 |
+
# Handling ControlNet
|
443 |
+
if control_image is not None:
|
444 |
+
if isinstance(controlnet_keep[i], list):
|
445 |
+
if isinstance(controlnet_conditioning_scale, list):
|
446 |
+
cond_scale = controlnet_conditioning_scale
|
447 |
+
else:
|
448 |
+
cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
|
449 |
+
else:
|
450 |
+
controlnet_cond_scale = controlnet_conditioning_scale
|
451 |
+
if isinstance(controlnet_cond_scale, list):
|
452 |
+
controlnet_cond_scale = controlnet_cond_scale[0]
|
453 |
+
cond_scale = controlnet_cond_scale * controlnet_keep[i]
|
454 |
+
|
455 |
+
# controlnet
|
456 |
+
controlnet_block_samples, controlnet_single_block_samples = self.controlnet(
|
457 |
+
hidden_states=latents,
|
458 |
+
controlnet_cond=control_image,
|
459 |
+
controlnet_mode=control_mode,
|
460 |
+
conditioning_scale=cond_scale,
|
461 |
+
timestep=timestep,
|
462 |
+
# guidance=guidance,
|
463 |
+
# pooled_projections=pooled_prompt_embeds,
|
464 |
+
encoder_hidden_states=prompt_embeds,
|
465 |
+
txt_ids=text_ids,
|
466 |
+
img_ids=latent_image_ids,
|
467 |
+
joint_attention_kwargs=self.joint_attention_kwargs,
|
468 |
+
return_dict=False,
|
469 |
+
)
|
470 |
+
else:
|
471 |
+
controlnet_block_samples, controlnet_single_block_samples = None, None
|
472 |
+
|
473 |
+
# This is predicts "v" from flow-matching
|
474 |
+
noise_pred = self.transformer(
|
475 |
+
hidden_states=latent_model_input,
|
476 |
+
timestep=timestep,
|
477 |
+
encoder_hidden_states=prompt_embeds,
|
478 |
+
joint_attention_kwargs=self.joint_attention_kwargs,
|
479 |
+
return_dict=False,
|
480 |
+
txt_ids=text_ids,
|
481 |
+
img_ids=latent_image_ids,
|
482 |
+
controlnet_block_samples=controlnet_block_samples,
|
483 |
+
controlnet_single_block_samples=controlnet_single_block_samples,
|
484 |
+
)[0]
|
485 |
+
|
486 |
+
# perform guidance
|
487 |
+
if self.do_classifier_free_guidance:
|
488 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
489 |
+
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
|
490 |
+
|
491 |
+
# compute the previous noisy sample x_t -> x_t-1
|
492 |
+
latents_dtype = latents.dtype
|
493 |
+
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
494 |
+
|
495 |
+
if latents.dtype != latents_dtype:
|
496 |
+
if torch.backends.mps.is_available():
|
497 |
+
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
498 |
+
latents = latents.to(latents_dtype)
|
499 |
+
|
500 |
+
if callback_on_step_end is not None:
|
501 |
+
callback_kwargs = {}
|
502 |
+
for k in callback_on_step_end_tensor_inputs:
|
503 |
+
callback_kwargs[k] = locals()[k]
|
504 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
505 |
+
|
506 |
+
latents = callback_outputs.pop("latents", latents)
|
507 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
508 |
+
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
509 |
+
|
510 |
+
# call the callback, if provided
|
511 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
512 |
+
progress_bar.update()
|
513 |
+
|
514 |
+
if XLA_AVAILABLE:
|
515 |
+
xm.mark_step()
|
516 |
+
|
517 |
+
if output_type == "latent":
|
518 |
+
image = latents
|
519 |
+
|
520 |
+
else:
|
521 |
+
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
|
522 |
+
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
|
523 |
+
image = self.vae.decode(latents.to(dtype=self.vae.dtype), return_dict=False)[0]
|
524 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
525 |
+
|
526 |
+
# Offload all models
|
527 |
+
self.maybe_free_model_hooks()
|
528 |
+
|
529 |
+
if not return_dict:
|
530 |
+
return (image,)
|
531 |
+
|
532 |
+
return FluxPipelineOutput(images=image)
|
transformer_bria.py
ADDED
@@ -0,0 +1,335 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, Dict, List, Optional, Union
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
6 |
+
from diffusers.loaders import PeftAdapterMixin, FromOriginalModelMixin
|
7 |
+
from diffusers.models.modeling_utils import ModelMixin
|
8 |
+
from diffusers.models.normalization import AdaLayerNormContinuous
|
9 |
+
from diffusers.utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers
|
10 |
+
from diffusers.models.modeling_outputs import Transformer2DModelOutput
|
11 |
+
from diffusers.models.embeddings import TimestepEmbedding, get_timestep_embedding
|
12 |
+
from diffusers.models.transformers.transformer_flux import FluxSingleTransformerBlock, FluxTransformerBlock
|
13 |
+
|
14 |
+
# Support different diffusers versions
|
15 |
+
try:
|
16 |
+
from diffusers.models.embeddings import FluxPosEmbed as EmbedND
|
17 |
+
except:
|
18 |
+
from diffusers.models.transformers.transformer_flux import rope
|
19 |
+
class EmbedND(nn.Module):
|
20 |
+
def __init__(self, theta: int, axes_dim: List[int]):
|
21 |
+
super().__init__()
|
22 |
+
self.theta = theta
|
23 |
+
self.axes_dim = axes_dim
|
24 |
+
|
25 |
+
def forward(self, ids: torch.Tensor) -> torch.Tensor:
|
26 |
+
n_axes = ids.shape[-1]
|
27 |
+
emb = torch.cat(
|
28 |
+
[rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)],
|
29 |
+
dim=-3,
|
30 |
+
)
|
31 |
+
return emb.unsqueeze(1)
|
32 |
+
|
33 |
+
|
34 |
+
|
35 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
36 |
+
|
37 |
+
class Timesteps(nn.Module):
|
38 |
+
def __init__(self, num_channels: int, flip_sin_to_cos: bool, downscale_freq_shift: float, scale: int = 1,time_theta=10000):
|
39 |
+
super().__init__()
|
40 |
+
self.num_channels = num_channels
|
41 |
+
self.flip_sin_to_cos = flip_sin_to_cos
|
42 |
+
self.downscale_freq_shift = downscale_freq_shift
|
43 |
+
self.scale = scale
|
44 |
+
self.time_theta=time_theta
|
45 |
+
|
46 |
+
def forward(self, timesteps):
|
47 |
+
t_emb = get_timestep_embedding(
|
48 |
+
timesteps,
|
49 |
+
self.num_channels,
|
50 |
+
flip_sin_to_cos=self.flip_sin_to_cos,
|
51 |
+
downscale_freq_shift=self.downscale_freq_shift,
|
52 |
+
scale=self.scale,
|
53 |
+
max_period=self.time_theta
|
54 |
+
)
|
55 |
+
return t_emb
|
56 |
+
|
57 |
+
class TimestepProjEmbeddings(nn.Module):
|
58 |
+
def __init__(self, embedding_dim, time_theta):
|
59 |
+
super().__init__()
|
60 |
+
|
61 |
+
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0,time_theta=time_theta)
|
62 |
+
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
|
63 |
+
|
64 |
+
def forward(self, timestep, dtype):
|
65 |
+
timesteps_proj = self.time_proj(timestep)
|
66 |
+
timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=dtype)) # (N, D)
|
67 |
+
return timesteps_emb
|
68 |
+
|
69 |
+
"""
|
70 |
+
Based on FluxPipeline with several changes:
|
71 |
+
- no pooled embeddings
|
72 |
+
- We use zero padding for prompts
|
73 |
+
- No guidance embedding since this is not a distilled version
|
74 |
+
"""
|
75 |
+
class BriaTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin):
|
76 |
+
"""
|
77 |
+
The Transformer model introduced in Flux.
|
78 |
+
|
79 |
+
Reference: https://blackforestlabs.ai/announcing-black-forest-labs/
|
80 |
+
|
81 |
+
Parameters:
|
82 |
+
patch_size (`int`): Patch size to turn the input data into small patches.
|
83 |
+
in_channels (`int`, *optional*, defaults to 16): The number of channels in the input.
|
84 |
+
num_layers (`int`, *optional*, defaults to 18): The number of layers of MMDiT blocks to use.
|
85 |
+
num_single_layers (`int`, *optional*, defaults to 18): The number of layers of single DiT blocks to use.
|
86 |
+
attention_head_dim (`int`, *optional*, defaults to 64): The number of channels in each head.
|
87 |
+
num_attention_heads (`int`, *optional*, defaults to 18): The number of heads to use for multi-head attention.
|
88 |
+
joint_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
|
89 |
+
pooled_projection_dim (`int`): Number of dimensions to use when projecting the `pooled_projections`.
|
90 |
+
guidance_embeds (`bool`, defaults to False): Whether to use guidance embeddings.
|
91 |
+
"""
|
92 |
+
|
93 |
+
_supports_gradient_checkpointing = True
|
94 |
+
|
95 |
+
@register_to_config
|
96 |
+
def __init__(
|
97 |
+
self,
|
98 |
+
patch_size: int = 1,
|
99 |
+
in_channels: int = 64,
|
100 |
+
num_layers: int = 19,
|
101 |
+
num_single_layers: int = 38,
|
102 |
+
attention_head_dim: int = 128,
|
103 |
+
num_attention_heads: int = 24,
|
104 |
+
joint_attention_dim: int = 4096,
|
105 |
+
pooled_projection_dim: int = None,
|
106 |
+
guidance_embeds: bool = False,
|
107 |
+
axes_dims_rope: List[int] = [16, 56, 56],
|
108 |
+
rope_theta = 10000,
|
109 |
+
time_theta = 10000
|
110 |
+
):
|
111 |
+
super().__init__()
|
112 |
+
self.out_channels = in_channels
|
113 |
+
self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim
|
114 |
+
|
115 |
+
self.pos_embed = EmbedND(theta=rope_theta, axes_dim=axes_dims_rope)
|
116 |
+
|
117 |
+
|
118 |
+
self.time_embed = TimestepProjEmbeddings(
|
119 |
+
embedding_dim=self.inner_dim,time_theta=time_theta
|
120 |
+
)
|
121 |
+
|
122 |
+
# if pooled_projection_dim:
|
123 |
+
# self.pooled_text_embed = PixArtAlphaTextProjection(pooled_projection_dim, embedding_dim=self.inner_dim, act_fn="silu")
|
124 |
+
|
125 |
+
if guidance_embeds:
|
126 |
+
self.guidance_embed = TimestepProjEmbeddings(embedding_dim=self.inner_dim)
|
127 |
+
|
128 |
+
self.context_embedder = nn.Linear(self.config.joint_attention_dim, self.inner_dim)
|
129 |
+
self.x_embedder = torch.nn.Linear(self.config.in_channels, self.inner_dim)
|
130 |
+
|
131 |
+
self.transformer_blocks = nn.ModuleList(
|
132 |
+
[
|
133 |
+
FluxTransformerBlock(
|
134 |
+
dim=self.inner_dim,
|
135 |
+
num_attention_heads=self.config.num_attention_heads,
|
136 |
+
attention_head_dim=self.config.attention_head_dim,
|
137 |
+
)
|
138 |
+
for i in range(self.config.num_layers)
|
139 |
+
]
|
140 |
+
)
|
141 |
+
|
142 |
+
self.single_transformer_blocks = nn.ModuleList(
|
143 |
+
[
|
144 |
+
FluxSingleTransformerBlock(
|
145 |
+
dim=self.inner_dim,
|
146 |
+
num_attention_heads=self.config.num_attention_heads,
|
147 |
+
attention_head_dim=self.config.attention_head_dim,
|
148 |
+
)
|
149 |
+
for i in range(self.config.num_single_layers)
|
150 |
+
]
|
151 |
+
)
|
152 |
+
|
153 |
+
self.norm_out = AdaLayerNormContinuous(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6)
|
154 |
+
self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True)
|
155 |
+
|
156 |
+
self.gradient_checkpointing = False
|
157 |
+
|
158 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
159 |
+
if hasattr(module, "gradient_checkpointing"):
|
160 |
+
module.gradient_checkpointing = value
|
161 |
+
|
162 |
+
def forward(
|
163 |
+
self,
|
164 |
+
hidden_states: torch.Tensor,
|
165 |
+
encoder_hidden_states: torch.Tensor = None,
|
166 |
+
pooled_projections: torch.Tensor = None,
|
167 |
+
timestep: torch.LongTensor = None,
|
168 |
+
img_ids: torch.Tensor = None,
|
169 |
+
txt_ids: torch.Tensor = None,
|
170 |
+
guidance: torch.Tensor = None,
|
171 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
172 |
+
return_dict: bool = True,
|
173 |
+
controlnet_block_samples = None,
|
174 |
+
controlnet_single_block_samples=None,
|
175 |
+
|
176 |
+
) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
|
177 |
+
"""
|
178 |
+
The [`FluxTransformer2DModel`] forward method.
|
179 |
+
|
180 |
+
Args:
|
181 |
+
hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
|
182 |
+
Input `hidden_states`.
|
183 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`):
|
184 |
+
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
|
185 |
+
pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected
|
186 |
+
from the embeddings of input conditions.
|
187 |
+
timestep ( `torch.LongTensor`):
|
188 |
+
Used to indicate denoising step.
|
189 |
+
block_controlnet_hidden_states: (`list` of `torch.Tensor`):
|
190 |
+
A list of tensors that if specified are added to the residuals of transformer blocks.
|
191 |
+
joint_attention_kwargs (`dict`, *optional*):
|
192 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
193 |
+
`self.processor` in
|
194 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
195 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
196 |
+
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
|
197 |
+
tuple.
|
198 |
+
|
199 |
+
Returns:
|
200 |
+
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
201 |
+
`tuple` where the first element is the sample tensor.
|
202 |
+
"""
|
203 |
+
if joint_attention_kwargs is not None:
|
204 |
+
joint_attention_kwargs = joint_attention_kwargs.copy()
|
205 |
+
lora_scale = joint_attention_kwargs.pop("scale", 1.0)
|
206 |
+
else:
|
207 |
+
lora_scale = 1.0
|
208 |
+
|
209 |
+
if USE_PEFT_BACKEND:
|
210 |
+
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
211 |
+
scale_lora_layers(self, lora_scale)
|
212 |
+
else:
|
213 |
+
if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None:
|
214 |
+
logger.warning(
|
215 |
+
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
|
216 |
+
)
|
217 |
+
hidden_states = self.x_embedder(hidden_states)
|
218 |
+
|
219 |
+
timestep = timestep.to(hidden_states.dtype)
|
220 |
+
if guidance is not None:
|
221 |
+
guidance = guidance.to(hidden_states.dtype)
|
222 |
+
else:
|
223 |
+
guidance = None
|
224 |
+
|
225 |
+
# temb = (
|
226 |
+
# self.time_text_embed(timestep, pooled_projections)
|
227 |
+
# if guidance is None
|
228 |
+
# else self.time_text_embed(timestep, guidance, pooled_projections)
|
229 |
+
# )
|
230 |
+
|
231 |
+
temb = self.time_embed(timestep,dtype=hidden_states.dtype)
|
232 |
+
|
233 |
+
# if pooled_projections:
|
234 |
+
# temb+=self.pooled_text_embed(pooled_projections)
|
235 |
+
|
236 |
+
if guidance:
|
237 |
+
temb+=self.guidance_embed(guidance,dtype=hidden_states.dtype)
|
238 |
+
|
239 |
+
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
|
240 |
+
|
241 |
+
if len(txt_ids.shape)==2:
|
242 |
+
ids = torch.cat((txt_ids, img_ids), dim=0)
|
243 |
+
else:
|
244 |
+
ids = torch.cat((txt_ids, img_ids), dim=1)
|
245 |
+
image_rotary_emb = self.pos_embed(ids)
|
246 |
+
|
247 |
+
for index_block, block in enumerate(self.transformer_blocks):
|
248 |
+
if self.training and self.gradient_checkpointing:
|
249 |
+
|
250 |
+
def create_custom_forward(module, return_dict=None):
|
251 |
+
def custom_forward(*inputs):
|
252 |
+
if return_dict is not None:
|
253 |
+
return module(*inputs, return_dict=return_dict)
|
254 |
+
else:
|
255 |
+
return module(*inputs)
|
256 |
+
|
257 |
+
return custom_forward
|
258 |
+
|
259 |
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
260 |
+
encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint(
|
261 |
+
create_custom_forward(block),
|
262 |
+
hidden_states,
|
263 |
+
encoder_hidden_states,
|
264 |
+
temb,
|
265 |
+
image_rotary_emb,
|
266 |
+
**ckpt_kwargs,
|
267 |
+
)
|
268 |
+
|
269 |
+
else:
|
270 |
+
encoder_hidden_states, hidden_states = block(
|
271 |
+
hidden_states=hidden_states,
|
272 |
+
encoder_hidden_states=encoder_hidden_states,
|
273 |
+
temb=temb,
|
274 |
+
image_rotary_emb=image_rotary_emb,
|
275 |
+
)
|
276 |
+
|
277 |
+
# controlnet residual
|
278 |
+
if controlnet_block_samples is not None:
|
279 |
+
interval_control = len(self.transformer_blocks) / len(controlnet_block_samples)
|
280 |
+
interval_control = int(np.ceil(interval_control))
|
281 |
+
hidden_states = hidden_states + controlnet_block_samples[index_block // interval_control]
|
282 |
+
|
283 |
+
|
284 |
+
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
|
285 |
+
|
286 |
+
for index_block, block in enumerate(self.single_transformer_blocks):
|
287 |
+
if self.training and self.gradient_checkpointing:
|
288 |
+
|
289 |
+
def create_custom_forward(module, return_dict=None):
|
290 |
+
def custom_forward(*inputs):
|
291 |
+
if return_dict is not None:
|
292 |
+
return module(*inputs, return_dict=return_dict)
|
293 |
+
else:
|
294 |
+
return module(*inputs)
|
295 |
+
|
296 |
+
return custom_forward
|
297 |
+
|
298 |
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
299 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
300 |
+
create_custom_forward(block),
|
301 |
+
hidden_states,
|
302 |
+
temb,
|
303 |
+
image_rotary_emb,
|
304 |
+
**ckpt_kwargs,
|
305 |
+
)
|
306 |
+
|
307 |
+
else:
|
308 |
+
hidden_states = block(
|
309 |
+
hidden_states=hidden_states,
|
310 |
+
temb=temb,
|
311 |
+
image_rotary_emb=image_rotary_emb,
|
312 |
+
)
|
313 |
+
|
314 |
+
# controlnet residual
|
315 |
+
if controlnet_single_block_samples is not None:
|
316 |
+
interval_control = len(self.single_transformer_blocks) / len(controlnet_single_block_samples)
|
317 |
+
interval_control = int(np.ceil(interval_control))
|
318 |
+
hidden_states[:, encoder_hidden_states.shape[1] :, ...] = (
|
319 |
+
hidden_states[:, encoder_hidden_states.shape[1] :, ...]
|
320 |
+
+ controlnet_single_block_samples[index_block // interval_control]
|
321 |
+
)
|
322 |
+
|
323 |
+
hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :, ...]
|
324 |
+
|
325 |
+
hidden_states = self.norm_out(hidden_states, temb)
|
326 |
+
output = self.proj_out(hidden_states)
|
327 |
+
|
328 |
+
if USE_PEFT_BACKEND:
|
329 |
+
# remove `lora_scale` from each PEFT layer
|
330 |
+
unscale_lora_layers(self, lora_scale)
|
331 |
+
|
332 |
+
if not return_dict:
|
333 |
+
return (output,)
|
334 |
+
|
335 |
+
return Transformer2DModelOutput(sample=output)
|