brucethemoose commited on
Commit
53a64f4
·
verified ·
1 Parent(s): 6bde91c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +14 -122
README.md CHANGED
@@ -11,9 +11,11 @@ tags:
11
  - merge
12
  - Yi
13
  ---
14
- # Yi 34B Merge v7
15
 
16
- A merge of several Yi 34B 200K models using the new DARE Ties method via mergekit. The goal is to create a merge model that excels at 32K+ context performance.
 
 
17
 
18
  ## Prompt template: Orca-Vicuna
19
  ```
@@ -24,135 +26,25 @@ ASSISTANT:
24
  It might recognize ChatML, and possibly Alpaca-like formats. Raw prompting as described here is also effective: https://old.reddit.com/r/LocalLLaMA/comments/18zqy4s/the_secret_to_writing_quality_stories_with_llms/
25
 
26
 
27
-
28
  ## Running
29
- Being a Yi model, try running a lower temperature with 0.02-0.06 MinP, a little repetition penalty, maybe mirostat with a low tau, and no other samplers. Yi tends to run "hot" by default, and it really needs a low temperature + MinP to cull the huge vocabulary.
30
-
31
- 24GB GPUs can efficiently run Yi-34B-200K models at **45K-90K context** with exllamav2, and performant UIs like [exui](https://github.com/turboderp/exui). I go into more detail in this [post](https://old.reddit.com/r/LocalLLaMA/comments/1896igc/how_i_run_34b_models_at_75k_context_on_24gb_fast/). 16GB GPUs can still run the high context with aggressive quantization.
32
-
33
- I recommend exl2 quantizations profiled on data similar to the desired task. It is especially sensitive to the quantization data at low bpw. I've uploaded my own fiction-oriented quantizations here: https://huggingface.co/collections/brucethemoose/most-recent-merge-65742644ca03b6c514afa204
34
-
35
- To load/train this in full-context backends like transformers, you *must* change `max_position_embeddings` in config.json to a lower value than 200,000, otherwise you will OOM! I do not recommend running high context without context-efficient backends like exllamav2 or unsloth.
36
-
37
-
38
- ## Testing Notes
39
-
40
- See: https://huggingface.co/brucethemoose/Yi-34B-200K-DARE-merge-v5#testing-notes
41
-
42
- A "4k" merge model was created to try and extend the context of SUS Chat and DPO-bagel before adding them to the merge: https://huggingface.co/brucethemoose/SUS-Bagel-200K-DARE-Test
43
 
44
- In addition, the weight gradients are biased towards Vicuna-format models in the first few layers to try and "emphasize" the Orca-Vicuna prompt template. How sucessful this is remains to be seen.
45
 
46
 
47
- ### Merge Method
48
 
49
- This model was merged using the [DARE](https://arxiv.org/abs/2311.03099) [TIES](https://arxiv.org/abs/2306.01708) merge method using /home/alpha/Storage/Models/Raw/chargoddard_Yi-34B-200K-Llama as a base.
50
-
51
- ### Models Merged
52
-
53
- The following models were included in the merge:
54
- * https://huggingface.co/kyujinpy/PlatYi-34B-200k-Q-FastChat
55
- * https://huggingface.co/jondurbin/bagel-34b-v0.2
56
- * https://huggingface.co/NousResearch/Nous-Capybara-34B
57
- * https://huggingface.co/migtissera/Tess-M-Creative-v1.0
58
- * https://huggingface.co/brucethemoose/SUS-Bagel-200K-DARE-Test
59
- * https://huggingface.co/Mihaiii/Pallas-0.5
60
- * https://huggingface.co/bhenrym14/airoboros-3_1-yi-34b-200k
61
- * https://huggingface.co/adamo1139/Yi-34B-200K-AEZAKMI-v2
62
- * https://huggingface.co/migtissera/Tess-34B-v1.4
63
- * https://huggingface.co/SUSTech/SUS-Chat-34B
64
- * https://huggingface.co/jondurbin/bagel-dpo-34b-v0.2
65
- * https://huggingface.co/chargoddard/Yi-34B-200K-Llama
66
- * https://huggingface.co/chargoddard/Yi-34B-Llama
67
-
68
-
69
- ### Configuration
70
-
71
- The following YAML configuration was used to produce this model:
72
-
73
- ```yaml
74
- models:
75
- - model: /home/alpha/Storage/Models/Raw/chargoddard_Yi-34B-200K-Llama
76
- # No parameters necessary for base model
77
- - model: /home/alpha/Storage/Models/Raw/migtissera_Tess-34B-v1.4
78
- parameters:
79
- weight: [0.23, 0.125, 0.125, 0.125, 0.125, 0.125]
80
- density: 0.59
81
- - model: /home/alpha/Models/Raw/Mihaiii_Pallas-0.5
82
- parameters:
83
- weight: [0.23, 0.125, 0.125, 0.125, 0.125, 0.125]
84
- density: 0.59
85
- - model: /home/alpha//Storage/Models/Raw/bhenrym14_airoboros-3_1-yi-34b-200k
86
- parameters:
87
- weight: [0.02, 0.106, 0.106, 0.106, 0.106, 0.106]
88
- density: 0.59
89
- - model: /home/alpha/Storage/Models/Raw/jondurbin_bagel-34b-v0.2
90
- #Only the SFT in the main merge since the DPO version seems to have no long context ability at all
91
- parameters:
92
- weight: [0.02, 0.100, 0.100, 0.100, 0.100, 0.100]
93
- density: 0.4
94
- - model: /home/alpha/Storage/Models/Raw/kyujinpy_PlatYi-34B-200k-Q-FastChat
95
- parameters:
96
- weight: [0.02, 0.100, 0.100, 0.100, 0.100, 0.100]
97
- density: 0.59
98
- #- model: /home/alpha/Storage/Models/Raw/ehartford_dolphin-2.2-yi-34b-200k
99
- # Dolphin 200K seems to be funky according to multiple leaderboards and perplexity tests?
100
- # parameters:
101
- # weight: 0.15
102
- # density: 0.6
103
- - model: /home/alpha/Models/Raw/adamo1139_Yi-34B-200K-AEZAKMI-v2
104
- parameters:
105
- weight: [0.02, 0.110, 0.110, 0.110, 0.110, 0.110]
106
- density: 0.59
107
- - model: /home/alpha/Storage/Models/Raw/Nous-Capybara-34B
108
- parameters:
109
- weight: [0.22, 0.126, 0.126, 0.126, 0.126, 0.126]
110
- density: 0.59
111
- - model: /home/alpha/Storage/Models/Raw/4kmerge
112
- parameters:
113
- weight: [0.02, 0.108, 0.108, 0.108, 0.108, 0.108]
114
- density: 0.5
115
- - model: /home/alpha/Models/Raw/migtissera_Tess-M-Creative-v1.0
116
- parameters:
117
- weight: [0.22, 0.100, 0.100, 0.100, 0.100, 0.10]
118
- density: 0.59
119
- merge_method: dare_ties
120
- tokenizer_source: union
121
- base_model: /home/alpha/Storage/Models/Raw/chargoddard_Yi-34B-200K-Llama
122
- parameters:
123
- int8_mask: true
124
- dtype: bfloat16
125
 
 
126
  ```
 
127
 
128
- The following config was used for the "4kmerge" model:
129
 
130
- ```yaml
131
- models:
132
- - model: /home/alpha/Models/Raw/chargoddard_Yi-34B-Llama
133
- # No parameters necessary for base model
134
- - model: /home/alpha/Storage/Models/Raw/chargoddard_Yi-34B-200K-Llama
135
- parameters:
136
- weight: 0.5
137
- density: 1
138
- - model: /home/alpha/Models/Raw/SUSTech_SUS-Chat-34B
139
- parameters:
140
- weight: 0.2
141
- density: 0.12
142
- - model: /home/alpha/Models/Raw/jondurbin_bagel-dpo-34b-v0.2
143
- parameters:
144
- weight: 0.2
145
- density: 0.15
146
- - model: /home/alpha/Models/Raw/jondurbin_bagel-34b-v0.2
147
- parameters:
148
- weight: 0.1
149
- density: 0.12
150
- merge_method: dare_ties
151
- tokenizer_source: union
152
- base_model: /home/alpha/Models/Raw/chargoddard_Yi-34B-Llama
153
- parameters:
154
- int8_mask: true
155
- dtype: bfloat16
156
  ```
 
 
 
157
 
158
 
 
11
  - merge
12
  - Yi
13
  ---
14
+ # Yi 34B Merge v8
15
 
16
+ A merge of several Yi 34B 200K models using the new DARE Ties method via mergekit, quantized with exllamav2 on ~300K tokens of a sci-fi story, a fantasy story, and a vicuna chat for optimal long context storywriting performance.
17
+
18
+ See the main model card: https://huggingface.co/brucethemoose/Yi-34B-200K-DARE-megamerge-v8
19
 
20
  ## Prompt template: Orca-Vicuna
21
  ```
 
26
  It might recognize ChatML, and possibly Alpaca-like formats. Raw prompting as described here is also effective: https://old.reddit.com/r/LocalLLaMA/comments/18zqy4s/the_secret_to_writing_quality_stories_with_llms/
27
 
28
 
 
29
  ## Running
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30
 
31
+ 24GB GPUs can run 4bpw Yi-34B-200K models at **45K context** with exllamav2, and performant UIs like [exui](https://github.com/turboderp/exui). I go into more detail in this [post](https://old.reddit.com/r/LocalLLaMA/comments/1896igc/how_i_run_34b_models_at_75k_context_on_24gb_fast/)
32
 
33
 
34
+ Being a Yi model, try running a lower temperature with 0.05+ MinP, a little repetition penalty, maybe mirostat with a low tau, and no other samplers. Yi tends to run "hot" by default, and it really needs a low temperature + MinP to cull the huge vocabulary.
35
 
36
+ ## Quantization Commands
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
 
38
+ First pass:
39
  ```
40
+ python /home/alpha/AI/exllamav2/convert.py --in_dir /home/alpha/FastModels/v8/v8 -o /home/alpha/FastModels/scratch -om /home/alpha/FastModels/v8meas.json --cal_dataset /home/alpha/Documents/stories.parquet -ml 32768 -mr 8 -ss 4096 -b 4.0 -hb 6 -nr
41
 
42
+ ```
43
 
44
+ Second pass:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45
  ```
46
+ python /home/alpha/AI/exllamav2/convert.py --in_dir /home/alpha/FastModels/v8/v8 -o /home/alpha/FastModels/scratch -m /home/alpha/FastModels/v8meas.json --cal_dataset /home/alpha/Documents/stories.parquet -l 12288 -r 26 -ml 32768 -mr 8 -ss 4096 -b 4.0 -hb 6 -cf /home/alpha/FastModels/v8-exl2-4bpw-fiction -nr
47
+ ```
48
+
49
 
50