btaskel commited on
Commit
36d9152
·
verified ·
1 Parent(s): 60af54b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +2 -2
README.md CHANGED
@@ -10,10 +10,10 @@ quantized_by: btaskel
10
  From Seikaijyu/RWKV6-3B-v2.1-Aphrodite-yandere-chat:
11
  https://huggingface.co/Seikaijyu/RWKV6-3B-v2.1-Aphrodite-yandere-chat
12
 
13
- Based on my experience, Q4_K_S and Q4_K_S are usually the balance points between model size, quantization, and speed.
14
 
15
  In some benchmarks, selecting a large-parameter low-quantization LLM tends to perform better than a small-parameter high-quantization LLM.
16
 
17
- 根据我的经验,通常Q4_K_S、Q4_K_S是模型尺寸/量化/速度的平衡点
18
 
19
  在某些基准测试中,选择大参数低量化模型往往比选择小参数高量化模型表现更好。
 
10
  From Seikaijyu/RWKV6-3B-v2.1-Aphrodite-yandere-chat:
11
  https://huggingface.co/Seikaijyu/RWKV6-3B-v2.1-Aphrodite-yandere-chat
12
 
13
+ Based on my experience, Q4_K_S and Q4_K_M are usually the balance points between model size, quantization, and speed.
14
 
15
  In some benchmarks, selecting a large-parameter low-quantization LLM tends to perform better than a small-parameter high-quantization LLM.
16
 
17
+ 根据我的经验,通常Q4_K_S、Q4_K_M是模型尺寸/量化/速度的平衡点
18
 
19
  在某些基准测试中,选择大参数低量化模型往往比选择小参数高量化模型表现更好。