Update README.md
Browse files
README.md
CHANGED
@@ -10,10 +10,10 @@ quantized_by: btaskel
|
|
10 |
From Seikaijyu/RWKV6-3B-v2.1-Aphrodite-yandere-chat:
|
11 |
https://huggingface.co/Seikaijyu/RWKV6-3B-v2.1-Aphrodite-yandere-chat
|
12 |
|
13 |
-
Based on my experience, Q4_K_S and
|
14 |
|
15 |
In some benchmarks, selecting a large-parameter low-quantization LLM tends to perform better than a small-parameter high-quantization LLM.
|
16 |
|
17 |
-
根据我的经验,通常Q4_K_S、
|
18 |
|
19 |
在某些基准测试中,选择大参数低量化模型往往比选择小参数高量化模型表现更好。
|
|
|
10 |
From Seikaijyu/RWKV6-3B-v2.1-Aphrodite-yandere-chat:
|
11 |
https://huggingface.co/Seikaijyu/RWKV6-3B-v2.1-Aphrodite-yandere-chat
|
12 |
|
13 |
+
Based on my experience, Q4_K_S and Q4_K_M are usually the balance points between model size, quantization, and speed.
|
14 |
|
15 |
In some benchmarks, selecting a large-parameter low-quantization LLM tends to perform better than a small-parameter high-quantization LLM.
|
16 |
|
17 |
+
根据我的经验,通常Q4_K_S、Q4_K_M是模型尺寸/量化/速度的平衡点
|
18 |
|
19 |
在某些基准测试中,选择大参数低量化模型往往比选择小参数高量化模型表现更好。
|