Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- zh
|
4 |
+
base_model:
|
5 |
+
- Seikaijyu/RWKV6-3B-v2.1-Aphrodite-yandere-chat
|
6 |
+
tags:
|
7 |
+
- quantization
|
8 |
+
quantized_by: btaskel
|
9 |
+
---
|
10 |
+
From Seikaijyu/RWKV6-3B-v2.1-Aphrodite-yandere-chat:
|
11 |
+
https://huggingface.co/Seikaijyu/RWKV6-3B-v2.1-Aphrodite-yandere-chat
|
12 |
+
|
13 |
+
Based on my experience, Q4_K_S and Q4_K_S are usually the balance points between model size, quantization, and speed.
|
14 |
+
|
15 |
+
In some benchmarks, selecting a large-parameter low-quantization LLM tends to perform better than a small-parameter high-quantization LLM.
|
16 |
+
|
17 |
+
根据我的经验,通常Q4_K_S、Q4_K_S是模型尺寸/量化/速度的平衡点
|
18 |
+
在一些基准测试下,选择大参数低量化的LLM,要比小参数高量化的LLM要好
|