Qwen-2.5-7b-S1k / README.md
bunnycore's picture
Adding Evaluation Results (#1)
05842d0 verified
metadata
library_name: transformers
tags:
  - mergekit
  - merge
base_model:
  - bunnycore/Qwen-2.5-7B-Deep-Stock-v4
  - bunnycore/Qwen-2.5-7b-s1k-lora_model
model-index:
  - name: Qwen-2.5-7b-S1k
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: IFEval (0-Shot)
          type: HuggingFaceH4/ifeval
          args:
            num_few_shot: 0
        metrics:
          - type: inst_level_strict_acc and prompt_level_strict_acc
            value: 71.62
            name: strict accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/Qwen-2.5-7b-S1k
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: BBH (3-Shot)
          type: BBH
          args:
            num_few_shot: 3
        metrics:
          - type: acc_norm
            value: 36.69
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/Qwen-2.5-7b-S1k
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MATH Lvl 5 (4-Shot)
          type: hendrycks/competition_math
          args:
            num_few_shot: 4
        metrics:
          - type: exact_match
            value: 47.81
            name: exact match
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/Qwen-2.5-7b-S1k
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GPQA (0-shot)
          type: Idavidrein/gpqa
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 4.59
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/Qwen-2.5-7b-S1k
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MuSR (0-shot)
          type: TAUR-Lab/MuSR
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 9.26
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/Qwen-2.5-7b-S1k
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU-PRO (5-shot)
          type: TIGER-Lab/MMLU-Pro
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 37.58
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/Qwen-2.5-7b-S1k
          name: Open LLM Leaderboard

System Prompt

Think about the reasoning process in the mind first, then provide the answer. The reasoning process should detailed and should be wrapped within <think> </think> tags, then provide the answer after that, i.e., <think> reasoning process here </think> answer here.

Configuration

The following YAML configuration was used to produce this model:


base_model: bunnycore/Qwen-2.5-7B-Deep-Stock-v4+bunnycore/Qwen-2.5-7b-s1k-lora_model
dtype: bfloat16
merge_method: passthrough
models:
  - model: bunnycore/Qwen-2.5-7B-Deep-Stock-v4+bunnycore/Qwen-2.5-7b-s1k-lora_model
tokenizer_source: bunnycore/Qwen-2.5-7B-Deep-Stock-v4

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 34.59
IFEval (0-Shot) 71.62
BBH (3-Shot) 36.69
MATH Lvl 5 (4-Shot) 47.81
GPQA (0-shot) 4.59
MuSR (0-shot) 9.26
MMLU-PRO (5-shot) 37.58