--- license: apache-2.0 base_model: NicolasDenier/distilhubert-finetuned-gtzan tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: bwilkie-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.1 --- # bwilkie-finetuned-gtzan This model is a fine-tuned version of [NicolasDenier/distilhubert-finetuned-gtzan](https://huggingface.co/NicolasDenier/distilhubert-finetuned-gtzan) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: nan - Accuracy: 0.1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0 | 1.0 | 112 | nan | 0.1 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.0 - Tokenizers 0.13.3