MingComplex
commited on
Commit
·
babf880
1
Parent(s):
27c601a
update readme
Browse files
README.md
CHANGED
@@ -11,18 +11,13 @@ library_name: transformers
|
|
11 |
|
12 |
|
13 |
# UI-TARS-72B-SFT
|
14 |
-
|
15 |
[UI-TARS-2B-SFT](https://huggingface.co/bytedance-research/UI-TARS-2B-SFT) |
|
16 |
[UI-TARS-2B-gguf](https://huggingface.co/bytedance-research/UI-TARS-2B-gguf) |
|
17 |
[UI-TARS-7B-SFT](https://huggingface.co/bytedance-research/UI-TARS-7B-SFT) |
|
18 |
-
[UI-TARS-7B-DPO](https://huggingface.co/bytedance-research/UI-TARS-7B-DPO) |
|
19 |
[UI-TARS-7B-gguf](https://huggingface.co/bytedance-research/UI-TARS-7B-gguf) |
|
20 |
[UI-TARS-72B-SFT](https://huggingface.co/bytedance-research/UI-TARS-72B-SFT) |
|
21 |
[UI-TARS-72B-DPO](https://huggingface.co/bytedance-research/UI-TARS-72B-DPO)
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
## Introduction
|
27 |
|
28 |
UI-TARS is a next-generation native GUI agent model designed to interact seamlessly with graphical user interfaces (GUIs) using human-like perception, reasoning, and action capabilities. Unlike traditional modular frameworks, UI-TARS integrates all key components—perception, reasoning, grounding, and memory—within a single vision-language model (VLM), enabling end-to-end task automation without predefined workflows or manual rules.
|
@@ -36,6 +31,8 @@ UI-TARS is a next-generation native GUI agent model designed to interact seamles
|
|
36 |
|
37 |
<!-- ![Local Image](figures/UI-TARS-vs-Previous-SOTA.png) -->
|
38 |
|
|
|
|
|
39 |
|
40 |
## Performance
|
41 |
**Perception Capabilty Evaluation**
|
@@ -186,6 +183,7 @@ UI-TARS is a next-generation native GUI agent model designed to interact seamles
|
|
186 |
| **UI-TARS-72B-DPO** | **22.7** (15 steps) | - |
|
187 |
| **UI-TARS-72B-DPO** | **24.6** (50 steps) | - |
|
188 |
|
|
|
189 |
## Citation
|
190 |
If you find our paper and model useful in your research, feel free to give us a cite.
|
191 |
|
|
|
11 |
|
12 |
|
13 |
# UI-TARS-72B-SFT
|
|
|
14 |
[UI-TARS-2B-SFT](https://huggingface.co/bytedance-research/UI-TARS-2B-SFT) |
|
15 |
[UI-TARS-2B-gguf](https://huggingface.co/bytedance-research/UI-TARS-2B-gguf) |
|
16 |
[UI-TARS-7B-SFT](https://huggingface.co/bytedance-research/UI-TARS-7B-SFT) |
|
17 |
+
[**UI-TARS-7B-DPO**](https://huggingface.co/bytedance-research/UI-TARS-7B-DPO)(Recommended) |
|
18 |
[UI-TARS-7B-gguf](https://huggingface.co/bytedance-research/UI-TARS-7B-gguf) |
|
19 |
[UI-TARS-72B-SFT](https://huggingface.co/bytedance-research/UI-TARS-72B-SFT) |
|
20 |
[UI-TARS-72B-DPO](https://huggingface.co/bytedance-research/UI-TARS-72B-DPO)
|
|
|
|
|
|
|
|
|
21 |
## Introduction
|
22 |
|
23 |
UI-TARS is a next-generation native GUI agent model designed to interact seamlessly with graphical user interfaces (GUIs) using human-like perception, reasoning, and action capabilities. Unlike traditional modular frameworks, UI-TARS integrates all key components—perception, reasoning, grounding, and memory—within a single vision-language model (VLM), enabling end-to-end task automation without predefined workflows or manual rules.
|
|
|
31 |
|
32 |
<!-- ![Local Image](figures/UI-TARS-vs-Previous-SOTA.png) -->
|
33 |
|
34 |
+
This repository contains the model for the paper [UI-TARS: Pioneering Automated GUI Interaction with Native Agents](https://huggingface.co/papers/2501.12326).
|
35 |
+
Code: https://github.com/bytedance/UI-TARS
|
36 |
|
37 |
## Performance
|
38 |
**Perception Capabilty Evaluation**
|
|
|
183 |
| **UI-TARS-72B-DPO** | **22.7** (15 steps) | - |
|
184 |
| **UI-TARS-72B-DPO** | **24.6** (50 steps) | - |
|
185 |
|
186 |
+
|
187 |
## Citation
|
188 |
If you find our paper and model useful in your research, feel free to give us a cite.
|
189 |
|