File size: 17,971 Bytes
42e3fde
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d50b8d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
---
license: apache-2.0
language:
- en
pipeline_tag: image-text-to-text
tags:
- multimodal
- gui
library_name: transformers
---

# UI-TARS-7B-SFT
[UI-TARS-2B-SFT](https://huggingface.co/bytedance-research/UI-TARS-2B-SFT)  |  
[UI-TARS-2B-gguf](https://huggingface.co/bytedance-research/UI-TARS-2B-gguf)  |  
[UI-TARS-7B-SFT](https://huggingface.co/bytedance-research/UI-TARS-7B-SFT)  | 
[UI-TARS-7B-DPO](https://huggingface.co/bytedance-research/UI-TARS-7B-DPO)  | 
[UI-TARS-7B-gguf](https://huggingface.co/bytedance-research/UI-TARS-7B-gguf)  |  
[UI-TARS-72B-SFT](https://huggingface.co/bytedance-research/UI-TARS-72B-SFT)  | 
[UI-TARS-72B-DPO](https://huggingface.co/bytedance-research/UI-TARS-72B-DPO)

This repository contains the model for the paper [UI-TARS: Pioneering Automated GUI Interaction with Native Agents](https://huggingface.co/papers/2501.12326).
## Introduction

UI-TARS is a next-generation native GUI agent model designed to interact seamlessly with graphical user interfaces (GUIs) using human-like perception, reasoning, and action capabilities. Unlike traditional modular frameworks, UI-TARS integrates all key components—perception, reasoning, grounding, and memory—within a single vision-language model (VLM), enabling end-to-end task automation without predefined workflows or manual rules.
<!-- ![Local Image](figures/UI-TARS.png) -->
<p align="center">
    <img src="https://github.com/bytedance/UI-TARS/blob/main/figures/UI-TARS-vs-Previous-SOTA.png?raw=true" width="90%"/>
<p>
<p align="center">
    <img src="https://github.com/bytedance/UI-TARS/blob/main/figures/UI-TARS.png?raw=true" width="90%"/>
<p>

<!-- ![Local Image](figures/UI-TARS-vs-Previous-SOTA.png) -->

Code: https://github.com/bytedance/UI-TARS


## Performance
**Perception Capabilty Evaluation**
| Model                     | VisualWebBench | WebSRC  | SQAshort |
|---------------------------|---------------|---------|----------|
| Qwen2-VL-7B              | 73.3          | 81.8    | 84.9     |
| Qwen-VL-Max              | 74.1          | 91.1    | 78.6     |
| Gemini-1.5-Pro           | 75.4          | 88.9    | 82.2     |
| UIX-Qwen2-7B             | 75.9          | 82.9    | 78.8     |
| Claude-3.5-Sonnet        | 78.2          | 90.4    | 83.1     |
| GPT-4o                   | 78.5          | 87.7    | 82.3     |
| **UI-TARS-2B**          | 72.9          | 89.2    | 86.4     |
| **UI-TARS-7B**          | 79.7          | **93.6** | 87.7     |
| **UI-TARS-72B**         | **82.8**      | 89.3    | **88.6** |

**Grounding Capability Evaluation**
- **ScreenSpot Pro**

| Agent Model              | Dev-Text | Dev-Icon | Dev-Avg | Creative-Text | Creative-Icon | Creative-Avg | CAD-Text | CAD-Icon | CAD-Avg | Scientific-Text | Scientific-Icon | Scientific-Avg | Office-Text | Office-Icon | Office-Avg | OS-Text | OS-Icon | OS-Avg | Avg-Text | Avg-Icon | Avg |
|--------------------------|----------|----------|----------|--------------|--------------|--------------|---------|---------|---------|---------------|---------------|---------------|------------|------------|------------|--------|--------|--------|---------|---------|------|
| QwenVL-7B               | 0.0      | 0.0      | 0.0      | 0.0          | 0.0          | 0.0          | 0.0     | 0.0     | 0.0     | 0.7           | 0.0           | 0.4           | 0.0        | 0.0        | 0.0        | 0.0    | 0.0    | 0.0    | 0.1     | 0.0     | **0.1**  |
| GPT-4o                  | 1.3      | 0.0      | 0.7      | 1.0          | 0.0          | 0.6          | 2.0     | 0.0     | 1.5     | 2.1           | 0.0           | 1.2           | 1.1        | 0.0        | 0.9        | 0.0    | 0.0    | 0.0    | 1.3     | 0.0     | **0.8**  |
| SeeClick                | 0.6      | 0.0      | 0.3      | 1.0          | 0.0          | 0.6          | 2.5     | 0.0     | 1.9     | 3.5           | 0.0           | 2.0           | 1.1        | 0.0        | 0.9        | 2.8    | 0.0    | 1.5    | 1.8     | 0.0     | **1.1**  |
| Qwen2-VL-7B             | 2.6      | 0.0      | 1.3      | 1.5          | 0.0          | 0.9          | 0.5     | 0.0     | 0.4     | 6.3           | 0.0           | 3.5           | 3.4        | 1.9        | 3.0        | 0.9    | 0.0    | 0.5    | 2.5     | 0.2     | **1.6**  |
| OS-Atlas-4B            | 7.1      | 0.0      | 3.7      | 3.0          | 1.4          | 2.3          | 2.0     | 0.0     | 1.5     | 9.0           | 5.5           | 7.5           | 5.1        | 3.8        | 4.8        | 5.6    | 0.0    | 3.1    | 5.0     | 1.7     | **3.7**  |
| ShowUI-2B              | 16.9     | 1.4      | 9.4      | 9.1          | 0.0          | 5.3          | 2.5     | 0.0     | 1.9     | 13.2          | 7.3           | 10.6          | 15.3       | 7.5        | 13.5       | 10.3   | 2.2    | 6.6    | 10.8    | 2.6     | **7.7**  |
| CogAgent-18B           | 14.9     | 0.7      | 8.0      | 9.6          | 0.0          | 5.6          | 7.1     | 3.1     | 6.1     | 22.2          | 1.8           | 13.4          | 13.0       | 0.0        | 10.0       | 5.6    | 0.0    | 3.1    | 12.0    | 0.8     | **7.7**  |
| Aria-UI                | 16.2     | 0.0      | 8.4      | 23.7         | 2.1          | 14.7         | 7.6     | 1.6     | 6.1     | 27.1          | 6.4           | 18.1          | 20.3       | 1.9        | 16.1       | 4.7    | 0.0    | 2.6    | 17.1    | 2.0     | **11.3**  |
| UGround-7B             | 26.6     | 2.1      | 14.7     | 27.3         | 2.8          | 17.0         | 14.2    | 1.6     | 11.1    | 31.9          | 2.7           | 19.3          | 31.6       | 11.3       | 27.0       | 17.8   | 0.0    | 9.7    | 25.0    | 2.8     | **16.5**  |
| Claude Computer Use      | 22.0  | 3.9   | 12.6  | 25.9  | 3.4   | 16.8  | 14.5  | 3.7   | 11.9  | 33.9  | 15.8  | 25.8  | 30.1  | 16.3  | 26.9  | 11.0  | 4.5   | 8.1   | 23.4  | 7.1  | **17.1**  |
| OS-Atlas-7B              | 33.1  | 1.4   | 17.7  | 28.8  | 2.8   | 17.9  | 12.2  | 4.7   | 10.3  | 37.5  | 7.3   | 24.4  | 33.9  | 5.7   | 27.4  | 27.1  | 4.5   | 16.8  | 28.1  | 4.0  | **18.9**  |
| UGround-V1-7B            | -     | -     | 35.5  | -     | -     | 27.8  | -     | -     | 13.5  | -     | -     | 38.8  | -     | -     | 48.8  | -     | -     | 26.1  | -     | -    | **31.1**  |
| **UI-TARS-2B**        | 47.4     | 4.1      | 26.4     | 42.9         | 6.3          | 27.6         | 17.8    | 4.7     | 14.6    | 56.9          | 17.3          | 39.8          | 50.3       | 17.0       | 42.6       | 21.5   | 5.6    | 14.3   | 39.6    | 8.4     | **27.7**  |
| **UI-TARS-7B**        | 58.4     | 12.4     | 36.1     | 50.0         | 9.1          | 32.8         | **20.8**| 9.4     | **18.0**| 63.9          | **31.8**      | **50.0**      | **63.3**   | 20.8       | 53.5       | 30.8   | **16.9**| 24.5   | 47.8    | 16.2    | **35.7**  |
| **UI-TARS-72B**       | **63.0** | **17.3** | **40.8** | **57.1**     | **15.4**     | **39.6**     | 18.8    | **12.5**| 17.2    | **64.6**      | 20.9          | 45.7          | **63.3**   | **26.4**   | **54.8**   | **42.1**| 15.7    | **30.1**| **50.9**| **17.5**| **38.1**  |


- **ScreenSpot v2**

| Method |  Mobile-Text | Mobile-Icon/Widget | Desktop-Text | Desktop-Icon/Widget | Web-Text | Web-Icon/Widget | Avg |
|--------|-------------|-------------|-------------|-------------|-------------|---------|---------|
| **Agent Framework**  | | | | | | | |
| GPT-4o (SeeClick)  | 85.2 | 58.8 | 79.9 | 37.1 | 72.7 | 30.1 | **63.6** |
| GPT-4o (OS-Atlas-4B)  | 95.5 | 75.8 | 79.4 | 49.3 | 90.2 | 66.5 | **79.1** |
| GPT-4o (OS-Atlas-7B)  | 96.2 | 83.4 | 89.7 | 69.3 | **94.0** | 79.8 | **87.1** |
| **Agent Model**  | | | | | | | |
| SeeClick  | 78.4 | 50.7 | 70.1 | 29.3 | 55.2 | 32.5 | **55.1** |
| OS-Atlas-4B  | 87.2 | 59.7 | 72.7 | 46.4 | 85.9 | 63.1 | **71.9** |
| OS-Atlas-7B  | 95.2 | 75.8 | 90.7 | 63.6 | 90.6 | 77.3 | **84.1** |
| **Our Model**  | | | | | | | |
| **UI-TARS-2B**  | 95.2 | 79.1 | 90.7 | 68.6 | 87.2 | 78.3 | **84.7** |
| **UI-TARS-7B** | **96.9** | **89.1** | **95.4** | 85.0 | 93.6 | 85.2 | **91.6** |
| **UI-TARS-72B**  | 94.8 | 86.3 | 91.2 | **87.9** | 91.5 | **87.7** | **90.3** |


**Online Agent Capability Evaluation**

| Method |  OSWorld (Online) | AndroidWorld (Online) |
|--------|-------------------|------------------|
| **Agent Framework**  | | |
| GPT-4o (UGround)  | - | 32.8 |
| GPT-4o (Aria-UI)  | 15.2 | 44.8 |
| GPT-4o (Aguvis-7B)  | 14.8 | 37.1 |
| GPT-4o (Aguvis-72B)  | 17.0 | - |
| GPT-4o (OS-Atlas-7B)  | 14.6 | - |
| **Agent Model**  | | |
| GPT-4o  | 5.0 | 34.5 (SoM) |
| Gemini-Pro-1.5  | 5.4 | 22.8 (SoM) |
| Aguvis-72B  | 10.3 | 26.1 |
| Claude Computer-Use  | 14.9 (15 steps) | 27.9 |
| Claude Computer-Use  | 22.0 (50 steps) | - |
| **Our Model**  | | |
| **UI-TARS-7B-SFT**  | 17.7 (15 steps) | 33.0 |
| **UI-TARS-7B-DPO**  | 18.7 (15 steps) | - |
| **UI-TARS-72B-SFT**  | 18.8 (15 steps) | **46.6** |
| **UI-TARS-72B-DPO**  | **22.7** (15 steps) | - |
| **UI-TARS-72B-DPO**  | **24.6** (50 steps) | - |

## Deployment

### Cloud Deployment
We recommend using HuggingFace Inference Endpoints for fast deployment.
We provide two docs for users to refer:

English version: [GUI Model Deployment Guide](https://juniper-switch-f10.notion.site/GUI-Model-Deployment-Guide-17b5350241e280058e98cea60317de71)

中文版: [GUI模型部署教程](https://bytedance.sg.larkoffice.com/docx/TCcudYwyIox5vyxiSDLlgIsTgWf#U94rdCxzBoJMLex38NPlHL21gNb)

### Local Deployment [Transformers]
We follow the same way as Qwen2-VL, check this [tutorial](https://github.com/QwenLM/Qwen2-VL?tab=readme-ov-file#using---transformers-to-chat) for more details.

### Local Deployment [vLLM]
We recommend using vLLM for fast deployment and inference. You need to use `vllm>=0.6.1`.
```bash
pip install -U transformers
VLLM_VERSION=0.6.6
CUDA_VERSION=cu124
pip install vllm==${VLLM_VERSION} --extra-index-url https://download.pytorch.org/whl/${CUDA_VERSION}

```
#### Start an OpenAI API Service

Run the command below to start an OpenAI-compatible API service:

```bash
python -m vllm.entrypoints.openai.api_server --served-model-name ui-tars --model <path to your model>
```

Then you can use the chat API as below with the gui prompt (choose from mobile or computer) and base64-encoded local images (see [OpenAI API protocol document](https://platform.openai.com/docs/guides/vision/uploading-base-64-encoded-images) for more details):
```python
import base64
from openai import OpenAI


instruction = "search for today's weather"
screenshot_path = "screenshot.png"
client = OpenAI(
    base_url="http://127.0.0.1:8000/v1",
    api_key="empty",
)

## Below is the prompt for mobile
prompt = r"""<|im_start|>system
You are a helpful assistant.<|im_end|>
<|im_start|>user
You are a GUI agent. You are given a task and your action history, with screenshots. You need to perform the next action to complete the task. 

## Output Format
```\nAction_Summary: ...
Action: ...\n```

## Action Space
click(start_box='<|box_start|>(x1,y1)<|box_end|>')
long_press(start_box='<|box_start|>(x1,y1)<|box_end|>', time='')
type(content='')
scroll(direction='down or up or right or left')
open_app(app_name='')
navigate_back()
navigate_home()
WAIT()
finished() # Submit the task regardless of whether it succeeds or fails.

## Note
- Use English in `Action_Summary` part.

## User Instruction
"""

with open(screenshot_path, "rb") as image_file:
    encoded_string = base64.b64encode(image_file.read()).decode("utf-8")
response = client.chat.completions.create(
    model="ui-tars",
    messages=[
        {
            "role": "user",
            "content": [
                {"type": "text", "text": prompt + instruction},
                {"type": "image_url", "image_url": {"url": f"data:image/png;base64,{encoded_string}"}},
            ],
        },
    ],
    frequency_penalty=1,
    max_tokens=128,
)
print(response.choices[0].message.content)
```

### Prompt Templates
We provide two prompt templates currently for stable running and performance, one for mobile scene and one for personal computer scene.
- Prompt template for mobile:
```python
## Below is the prompt for mobile
prompt = r"""<|im_start|>system
You are a helpful assistant.<|im_end|>
<|im_start|>user
You are a GUI agent. You are given a task and your action history, with screenshots. You need to perform the next action to complete the task. 

## Output Format
```\nThought: ...
Action: ...\n```

## Action Space
click(start_box='<|box_start|>(x1,y1)<|box_end|>')
long_press(start_box='<|box_start|>(x1,y1)<|box_end|>', time='')
type(content='')
scroll(direction='down or up or right or left')
open_app(app_name='')
navigate_back()
navigate_home()
WAIT()
finished() # Submit the task regardless of whether it succeeds or fails.

## Note
- Use English in `Action_Summary` part.

## User Instruction
"""
```

- Prompt template for computer:
```python
## Below is the prompt for computer
prompt = r"""<|im_start|>system
You are a helpful assistant.<|im_end|>
<|im_start|>user
You are a GUI agent. You are given a task and your action history, with screenshots. You need to perform the next action to complete the task. 

## Output Format
```\nThought: ...
Action: ...\n```

## Action Space

click(start_box='<|box_start|>(x1,y1)<|box_end|>')
left_double(start_box='<|box_start|>(x1,y1)<|box_end|>')
right_single(start_box='<|box_start|>(x1,y1)<|box_end|>')
drag(start_box='<|box_start|>(x1,y1)<|box_end|>', end_box='<|box_start|>(x3,y3)<|box_end|>')
hotkey(key='')
type(content='') #If you want to submit your input, use \"\
\" at the end of `content`.
scroll(start_box='<|box_start|>(x1,y1)<|box_end|>', direction='down or up or right or left')
wait() #Sleep for 5s and take a screenshot to check for any changes.
finished()
call_user() # Submit the task and call the user when the task is unsolvable, or when you need the user's help.


## Note
- Use Chinese in `Thought` part.
- Summarize your next action (with its target element) in one sentence in `Thought` part.

## User Instruction
"""
```

### Local Deployment [Ollama]
Ollama can deploy the model via gguf format. Bugs exist for safetensors.

#### Get the model in GGUF format
We provide 2B and 7B model in [GGUF](https://huggingface.co/docs/hub/en/gguf) format:

2B: https://huggingface.co/bytedance-research/UI-TARS-2B-gguf

7B: https://huggingface.co/bytedance-research/UI-TARS-7B-gguf

Users can convert the model into GGUF format by using the script from [llama.cpp](https://github.com/ggerganov/llama.cpp/blob/master/convert_hf_to_gguf.py):

```bash
python3 convert_hf_to_gguf.py <path to your model>
```

The GGUF file will be generated under the path provided.

#### Deploy GGUF model
We deploy the model by following Ollama [tutorial](https://github.com/ollama/ollama?tab=readme-ov-file#customize-a-model).

```bash
# Create Modelfile, Windows users can just create a file named Modelfile
echo "FROM ./path/to/model.gguf" > Modelfile

# Create model in Ollama
ollama create ui-tars -f Modelfile

# Run the model
ollama run ui-tars

```

Test script is same as vLLM except two changes:

```python
...
client = OpenAI(
    base_url="http://127.0.0.1:11434/v1/",
    ...
)
...
response = client.chat.completions.create(
    model="ui-tars" # the name we create via Ollama cli
    ...
)

```

### Explanation of Inference Results

#### Coordinate Mapping
The model generates a 2D coordinate output that represents relative positions. To convert these values to image-relative coordinates, divide each component by 1000 to obtain values in the range [0,1]. The absolute coordinates required by the Action can be calculated by: 
- X absolute = X relative × image width
- Y absolute = Y relative × image height

For example, given a screen size: 1920 × 1080, and the model generates a coordinate output of (235, 512). The X absolute is `round(1920*235/1000)=451`. The Y absolute is `round(1080*512/1000)=553`. The absolute coordinate is (451, 553)

## Use in desktop and web automation

To experience ui-tars agent in desktop, you may refer to [UI-TARS-desktop](https://github.com/bytedance/UI-TARS-desktop).

[Midscene.js](https://github.com/web-infra-dev/Midscene) is an open-source web automation SDK that has supported UI-TARS model. Developers can use javascript and natural language to control the browser. See [this guide](https://midscenejs.com/choose-a-model) for more details about setting up the model.

## License

UI-TARS is licensed under the Apache License 2.0.

## Acknowledgements
This project builds upon and extends the capabilities of Qwen-2-VL, a powerful vision-language model, which serves as the foundational architecture for UI-TARS. We would like to acknowledge the contributions of the developers and researchers behind Qwen-2-VL for their groundbreaking work in the field of multimodal AI and for providing a robust base for further advancements.

Additionally, we thank the broader open-source community for their datasets, tools, and insights that have facilitated the development of UI-TARS. These collaborative efforts continue to push the boundaries of what GUI automation and AI-driven agents can achieve.

## Citation
If you find our paper and code useful in your research, feel free to give us a cite.

```BibTeX
@article{uitars2025,
  author    = {Yujia Qin, Yining Ye, Junjie Fang, Haoming Wang, Shihao Liang, Shizuo Tian, Junda Zhang, Jiahao Li, Yunxin Li, Shijue Huang, Wanjun Zhong, Kuanye Li, Jiale Yang, Yu Miao, Woyu Lin, Longxiang Liu, Xu Jiang, Qianli Ma, Jingyu Li, Xiaojun Xiao, Kai Cai, Chuang Li, Yaowei Zheng, Chaolin Jin, Chen Li, Xiao Zhou, Minchao Wang, Haoli Chen, Zhaojian Li, Haihua Yang, Haifeng Liu, Feng Lin, Tao Peng, Xin Liu, Guang Shi},
  title     = {UI-TARS: Pioneering Automated GUI Interaction with Native Agents},
  journal   = {arXiv preprint arXiv:2501.12326},
  url       = {https://github.com/bytedance/UI-TARS},
  year      = {2025}
}
```