MingComplex commited on
Commit
7ceaa69
·
1 Parent(s): caee740

update readme

Browse files
Files changed (1) hide show
  1. README.md +3 -357
README.md CHANGED
@@ -1,4 +1,3 @@
1
- <<<<<<< HEAD
2
  ---
3
  license: apache-2.0
4
  language:
@@ -32,6 +31,8 @@ UI-TARS is a next-generation native GUI agent model designed to interact seamles
32
 
33
  <!-- ![Local Image](figures/UI-TARS-vs-Previous-SOTA.png) -->
34
 
 
 
35
 
36
  ## Performance
37
  **Perception Capabilty Evaluation**
@@ -182,363 +183,9 @@ UI-TARS is a next-generation native GUI agent model designed to interact seamles
182
  | **UI-TARS-72B-DPO** | **22.7** (15 steps) | - |
183
  | **UI-TARS-72B-DPO** | **24.6** (50 steps) | - |
184
 
185
- ## Citation
186
- If you find our paper and model useful in your research, feel free to give us a cite.
187
-
188
- ```BibTeX
189
- @article{uitars2025,
190
- author = {Yujia Qin, Yining Ye, Junjie Fang, Haoming Wang, Shihao Liang, Shizuo Tian, Junda Zhang, Jiahao Li, Yunxin Li, Shijue Huang, Wanjun Zhong, Kuanye Li, Jiale Yang, Yu Miao, Woyu Lin, Longxiang Liu, Xu Jiang, Qianli Ma, Jingyu Li, Xiaojun Xiao, Kai Cai, Chuang Li, Yaowei Zheng, Chaolin Jin, Chen Li, Xiao Zhou, Minchao Wang, Haoli Chen, Zhaojian Li, Haihua Yang, Haifeng Liu, Feng Lin, Tao Peng, Xin Liu, Guang Shi},
191
- title = {UI-TARS: Pioneering Automated GUI Interaction with Native Agents},
192
- journal = {arXiv preprint arXiv:2501.12326},
193
- url = {https://github.com/bytedance/UI-TARS},
194
- year = {2025}
195
- }
196
- =======
197
- ---
198
- license: apache-2.0
199
- language:
200
- - en
201
- pipeline_tag: image-text-to-text
202
- tags:
203
- - multimodal
204
- - gui
205
- library_name: transformers
206
- ---
207
-
208
- # UI-TARS-7B-SFT
209
- [UI-TARS-2B-SFT](https://huggingface.co/bytedance-research/UI-TARS-2B-SFT) &nbsp;|&nbsp;
210
- [UI-TARS-2B-gguf](https://huggingface.co/bytedance-research/UI-TARS-2B-gguf) &nbsp;|&nbsp;
211
- [UI-TARS-7B-SFT](https://huggingface.co/bytedance-research/UI-TARS-7B-SFT) &nbsp;|&nbsp;
212
- [UI-TARS-7B-DPO](https://huggingface.co/bytedance-research/UI-TARS-7B-DPO) &nbsp;|&nbsp;
213
- [UI-TARS-7B-gguf](https://huggingface.co/bytedance-research/UI-TARS-7B-gguf) &nbsp;|&nbsp;
214
- [UI-TARS-72B-SFT](https://huggingface.co/bytedance-research/UI-TARS-72B-SFT) &nbsp;|&nbsp;
215
- [UI-TARS-72B-DPO](https://huggingface.co/bytedance-research/UI-TARS-72B-DPO)
216
-
217
- This repository contains the model for the paper [UI-TARS: Pioneering Automated GUI Interaction with Native Agents](https://huggingface.co/papers/2501.12326).
218
- ## Introduction
219
-
220
- UI-TARS is a next-generation native GUI agent model designed to interact seamlessly with graphical user interfaces (GUIs) using human-like perception, reasoning, and action capabilities. Unlike traditional modular frameworks, UI-TARS integrates all key components—perception, reasoning, grounding, and memory—within a single vision-language model (VLM), enabling end-to-end task automation without predefined workflows or manual rules.
221
- <!-- ![Local Image](figures/UI-TARS.png) -->
222
- <p align="center">
223
- <img src="https://github.com/bytedance/UI-TARS/blob/main/figures/UI-TARS-vs-Previous-SOTA.png?raw=true" width="90%"/>
224
- <p>
225
- <p align="center">
226
- <img src="https://github.com/bytedance/UI-TARS/blob/main/figures/UI-TARS.png?raw=true" width="90%"/>
227
- <p>
228
-
229
- <!-- ![Local Image](figures/UI-TARS-vs-Previous-SOTA.png) -->
230
-
231
- Code: https://github.com/bytedance/UI-TARS
232
-
233
-
234
- ## Performance
235
- **Perception Capabilty Evaluation**
236
- | Model | VisualWebBench | WebSRC | SQAshort |
237
- |---------------------------|---------------|---------|----------|
238
- | Qwen2-VL-7B | 73.3 | 81.8 | 84.9 |
239
- | Qwen-VL-Max | 74.1 | 91.1 | 78.6 |
240
- | Gemini-1.5-Pro | 75.4 | 88.9 | 82.2 |
241
- | UIX-Qwen2-7B | 75.9 | 82.9 | 78.8 |
242
- | Claude-3.5-Sonnet | 78.2 | 90.4 | 83.1 |
243
- | GPT-4o | 78.5 | 87.7 | 82.3 |
244
- | **UI-TARS-2B** | 72.9 | 89.2 | 86.4 |
245
- | **UI-TARS-7B** | 79.7 | **93.6** | 87.7 |
246
- | **UI-TARS-72B** | **82.8** | 89.3 | **88.6** |
247
-
248
- **Grounding Capability Evaluation**
249
- - **ScreenSpot Pro**
250
-
251
- | Agent Model | Dev-Text | Dev-Icon | Dev-Avg | Creative-Text | Creative-Icon | Creative-Avg | CAD-Text | CAD-Icon | CAD-Avg | Scientific-Text | Scientific-Icon | Scientific-Avg | Office-Text | Office-Icon | Office-Avg | OS-Text | OS-Icon | OS-Avg | Avg-Text | Avg-Icon | Avg |
252
- |--------------------------|----------|----------|----------|--------------|--------------|--------------|---------|---------|---------|---------------|---------------|---------------|------------|------------|------------|--------|--------|--------|---------|---------|------|
253
- | QwenVL-7B | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7 | 0.0 | 0.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | **0.1** |
254
- | GPT-4o | 1.3 | 0.0 | 0.7 | 1.0 | 0.0 | 0.6 | 2.0 | 0.0 | 1.5 | 2.1 | 0.0 | 1.2 | 1.1 | 0.0 | 0.9 | 0.0 | 0.0 | 0.0 | 1.3 | 0.0 | **0.8** |
255
- | SeeClick | 0.6 | 0.0 | 0.3 | 1.0 | 0.0 | 0.6 | 2.5 | 0.0 | 1.9 | 3.5 | 0.0 | 2.0 | 1.1 | 0.0 | 0.9 | 2.8 | 0.0 | 1.5 | 1.8 | 0.0 | **1.1** |
256
- | Qwen2-VL-7B | 2.6 | 0.0 | 1.3 | 1.5 | 0.0 | 0.9 | 0.5 | 0.0 | 0.4 | 6.3 | 0.0 | 3.5 | 3.4 | 1.9 | 3.0 | 0.9 | 0.0 | 0.5 | 2.5 | 0.2 | **1.6** |
257
- | OS-Atlas-4B | 7.1 | 0.0 | 3.7 | 3.0 | 1.4 | 2.3 | 2.0 | 0.0 | 1.5 | 9.0 | 5.5 | 7.5 | 5.1 | 3.8 | 4.8 | 5.6 | 0.0 | 3.1 | 5.0 | 1.7 | **3.7** |
258
- | ShowUI-2B | 16.9 | 1.4 | 9.4 | 9.1 | 0.0 | 5.3 | 2.5 | 0.0 | 1.9 | 13.2 | 7.3 | 10.6 | 15.3 | 7.5 | 13.5 | 10.3 | 2.2 | 6.6 | 10.8 | 2.6 | **7.7** |
259
- | CogAgent-18B | 14.9 | 0.7 | 8.0 | 9.6 | 0.0 | 5.6 | 7.1 | 3.1 | 6.1 | 22.2 | 1.8 | 13.4 | 13.0 | 0.0 | 10.0 | 5.6 | 0.0 | 3.1 | 12.0 | 0.8 | **7.7** |
260
- | Aria-UI | 16.2 | 0.0 | 8.4 | 23.7 | 2.1 | 14.7 | 7.6 | 1.6 | 6.1 | 27.1 | 6.4 | 18.1 | 20.3 | 1.9 | 16.1 | 4.7 | 0.0 | 2.6 | 17.1 | 2.0 | **11.3** |
261
- | UGround-7B | 26.6 | 2.1 | 14.7 | 27.3 | 2.8 | 17.0 | 14.2 | 1.6 | 11.1 | 31.9 | 2.7 | 19.3 | 31.6 | 11.3 | 27.0 | 17.8 | 0.0 | 9.7 | 25.0 | 2.8 | **16.5** |
262
- | Claude Computer Use | 22.0 | 3.9 | 12.6 | 25.9 | 3.4 | 16.8 | 14.5 | 3.7 | 11.9 | 33.9 | 15.8 | 25.8 | 30.1 | 16.3 | 26.9 | 11.0 | 4.5 | 8.1 | 23.4 | 7.1 | **17.1** |
263
- | OS-Atlas-7B | 33.1 | 1.4 | 17.7 | 28.8 | 2.8 | 17.9 | 12.2 | 4.7 | 10.3 | 37.5 | 7.3 | 24.4 | 33.9 | 5.7 | 27.4 | 27.1 | 4.5 | 16.8 | 28.1 | 4.0 | **18.9** |
264
- | UGround-V1-7B | - | - | 35.5 | - | - | 27.8 | - | - | 13.5 | - | - | 38.8 | - | - | 48.8 | - | - | 26.1 | - | - | **31.1** |
265
- | **UI-TARS-2B** | 47.4 | 4.1 | 26.4 | 42.9 | 6.3 | 27.6 | 17.8 | 4.7 | 14.6 | 56.9 | 17.3 | 39.8 | 50.3 | 17.0 | 42.6 | 21.5 | 5.6 | 14.3 | 39.6 | 8.4 | **27.7** |
266
- | **UI-TARS-7B** | 58.4 | 12.4 | 36.1 | 50.0 | 9.1 | 32.8 | **20.8**| 9.4 | **18.0**| 63.9 | **31.8** | **50.0** | **63.3** | 20.8 | 53.5 | 30.8 | **16.9**| 24.5 | 47.8 | 16.2 | **35.7** |
267
- | **UI-TARS-72B** | **63.0** | **17.3** | **40.8** | **57.1** | **15.4** | **39.6** | 18.8 | **12.5**| 17.2 | **64.6** | 20.9 | 45.7 | **63.3** | **26.4** | **54.8** | **42.1**| 15.7 | **30.1**| **50.9**| **17.5**| **38.1** |
268
-
269
-
270
- - **ScreenSpot v2**
271
-
272
- | Method | Mobile-Text | Mobile-Icon/Widget | Desktop-Text | Desktop-Icon/Widget | Web-Text | Web-Icon/Widget | Avg |
273
- |--------|-------------|-------------|-------------|-------------|-------------|---------|---------|
274
- | **Agent Framework** | | | | | | | |
275
- | GPT-4o (SeeClick) | 85.2 | 58.8 | 79.9 | 37.1 | 72.7 | 30.1 | **63.6** |
276
- | GPT-4o (OS-Atlas-4B) | 95.5 | 75.8 | 79.4 | 49.3 | 90.2 | 66.5 | **79.1** |
277
- | GPT-4o (OS-Atlas-7B) | 96.2 | 83.4 | 89.7 | 69.3 | **94.0** | 79.8 | **87.1** |
278
- | **Agent Model** | | | | | | | |
279
- | SeeClick | 78.4 | 50.7 | 70.1 | 29.3 | 55.2 | 32.5 | **55.1** |
280
- | OS-Atlas-4B | 87.2 | 59.7 | 72.7 | 46.4 | 85.9 | 63.1 | **71.9** |
281
- | OS-Atlas-7B | 95.2 | 75.8 | 90.7 | 63.6 | 90.6 | 77.3 | **84.1** |
282
- | **Our Model** | | | | | | | |
283
- | **UI-TARS-2B** | 95.2 | 79.1 | 90.7 | 68.6 | 87.2 | 78.3 | **84.7** |
284
- | **UI-TARS-7B** | **96.9** | **89.1** | **95.4** | 85.0 | 93.6 | 85.2 | **91.6** |
285
- | **UI-TARS-72B** | 94.8 | 86.3 | 91.2 | **87.9** | 91.5 | **87.7** | **90.3** |
286
-
287
-
288
- **Online Agent Capability Evaluation**
289
-
290
- | Method | OSWorld (Online) | AndroidWorld (Online) |
291
- |--------|-------------------|------------------|
292
- | **Agent Framework** | | |
293
- | GPT-4o (UGround) | - | 32.8 |
294
- | GPT-4o (Aria-UI) | 15.2 | 44.8 |
295
- | GPT-4o (Aguvis-7B) | 14.8 | 37.1 |
296
- | GPT-4o (Aguvis-72B) | 17.0 | - |
297
- | GPT-4o (OS-Atlas-7B) | 14.6 | - |
298
- | **Agent Model** | | |
299
- | GPT-4o | 5.0 | 34.5 (SoM) |
300
- | Gemini-Pro-1.5 | 5.4 | 22.8 (SoM) |
301
- | Aguvis-72B | 10.3 | 26.1 |
302
- | Claude Computer-Use | 14.9 (15 steps) | 27.9 |
303
- | Claude Computer-Use | 22.0 (50 steps) | - |
304
- | **Our Model** | | |
305
- | **UI-TARS-7B-SFT** | 17.7 (15 steps) | 33.0 |
306
- | **UI-TARS-7B-DPO** | 18.7 (15 steps) | - |
307
- | **UI-TARS-72B-SFT** | 18.8 (15 steps) | **46.6** |
308
- | **UI-TARS-72B-DPO** | **22.7** (15 steps) | - |
309
- | **UI-TARS-72B-DPO** | **24.6** (50 steps) | - |
310
-
311
- ## Deployment
312
-
313
- ### Cloud Deployment
314
- We recommend using HuggingFace Inference Endpoints for fast deployment.
315
- We provide two docs for users to refer:
316
-
317
- English version: [GUI Model Deployment Guide](https://juniper-switch-f10.notion.site/GUI-Model-Deployment-Guide-17b5350241e280058e98cea60317de71)
318
-
319
- 中文版: [GUI模型部署教程](https://bytedance.sg.larkoffice.com/docx/TCcudYwyIox5vyxiSDLlgIsTgWf#U94rdCxzBoJMLex38NPlHL21gNb)
320
-
321
- ### Local Deployment [Transformers]
322
- We follow the same way as Qwen2-VL, check this [tutorial](https://github.com/QwenLM/Qwen2-VL?tab=readme-ov-file#using---transformers-to-chat) for more details.
323
-
324
- ### Local Deployment [vLLM]
325
- We recommend using vLLM for fast deployment and inference. You need to use `vllm>=0.6.1`.
326
- ```bash
327
- pip install -U transformers
328
- VLLM_VERSION=0.6.6
329
- CUDA_VERSION=cu124
330
- pip install vllm==${VLLM_VERSION} --extra-index-url https://download.pytorch.org/whl/${CUDA_VERSION}
331
-
332
- ```
333
- #### Start an OpenAI API Service
334
-
335
- Run the command below to start an OpenAI-compatible API service:
336
-
337
- ```bash
338
- python -m vllm.entrypoints.openai.api_server --served-model-name ui-tars --model <path to your model>
339
- ```
340
-
341
- Then you can use the chat API as below with the gui prompt (choose from mobile or computer) and base64-encoded local images (see [OpenAI API protocol document](https://platform.openai.com/docs/guides/vision/uploading-base-64-encoded-images) for more details):
342
- ```python
343
- import base64
344
- from openai import OpenAI
345
-
346
-
347
- instruction = "search for today's weather"
348
- screenshot_path = "screenshot.png"
349
- client = OpenAI(
350
- base_url="http://127.0.0.1:8000/v1",
351
- api_key="empty",
352
- )
353
-
354
- ## Below is the prompt for mobile
355
- prompt = r"""<|im_start|>system
356
- You are a helpful assistant.<|im_end|>
357
- <|im_start|>user
358
- You are a GUI agent. You are given a task and your action history, with screenshots. You need to perform the next action to complete the task.
359
-
360
- ## Output Format
361
- ```\nAction_Summary: ...
362
- Action: ...\n```
363
-
364
- ## Action Space
365
- click(start_box='<|box_start|>(x1,y1)<|box_end|>')
366
- long_press(start_box='<|box_start|>(x1,y1)<|box_end|>', time='')
367
- type(content='')
368
- scroll(direction='down or up or right or left')
369
- open_app(app_name='')
370
- navigate_back()
371
- navigate_home()
372
- WAIT()
373
- finished() # Submit the task regardless of whether it succeeds or fails.
374
-
375
- ## Note
376
- - Use English in `Action_Summary` part.
377
-
378
- ## User Instruction
379
- """
380
-
381
- with open(screenshot_path, "rb") as image_file:
382
- encoded_string = base64.b64encode(image_file.read()).decode("utf-8")
383
- response = client.chat.completions.create(
384
- model="ui-tars",
385
- messages=[
386
- {
387
- "role": "user",
388
- "content": [
389
- {"type": "text", "text": prompt + instruction},
390
- {"type": "image_url", "image_url": {"url": f"data:image/png;base64,{encoded_string}"}},
391
- ],
392
- },
393
- ],
394
- frequency_penalty=1,
395
- max_tokens=128,
396
- )
397
- print(response.choices[0].message.content)
398
- ```
399
-
400
- ### Prompt Templates
401
- We provide two prompt templates currently for stable running and performance, one for mobile scene and one for personal computer scene.
402
- - Prompt template for mobile:
403
- ```python
404
- ## Below is the prompt for mobile
405
- prompt = r"""<|im_start|>system
406
- You are a helpful assistant.<|im_end|>
407
- <|im_start|>user
408
- You are a GUI agent. You are given a task and your action history, with screenshots. You need to perform the next action to complete the task.
409
-
410
- ## Output Format
411
- ```\nThought: ...
412
- Action: ...\n```
413
-
414
- ## Action Space
415
- click(start_box='<|box_start|>(x1,y1)<|box_end|>')
416
- long_press(start_box='<|box_start|>(x1,y1)<|box_end|>', time='')
417
- type(content='')
418
- scroll(direction='down or up or right or left')
419
- open_app(app_name='')
420
- navigate_back()
421
- navigate_home()
422
- WAIT()
423
- finished() # Submit the task regardless of whether it succeeds or fails.
424
-
425
- ## Note
426
- - Use English in `Action_Summary` part.
427
-
428
- ## User Instruction
429
- """
430
- ```
431
-
432
- - Prompt template for computer:
433
- ```python
434
- ## Below is the prompt for computer
435
- prompt = r"""<|im_start|>system
436
- You are a helpful assistant.<|im_end|>
437
- <|im_start|>user
438
- You are a GUI agent. You are given a task and your action history, with screenshots. You need to perform the next action to complete the task.
439
-
440
- ## Output Format
441
- ```\nThought: ...
442
- Action: ...\n```
443
-
444
- ## Action Space
445
-
446
- click(start_box='<|box_start|>(x1,y1)<|box_end|>')
447
- left_double(start_box='<|box_start|>(x1,y1)<|box_end|>')
448
- right_single(start_box='<|box_start|>(x1,y1)<|box_end|>')
449
- drag(start_box='<|box_start|>(x1,y1)<|box_end|>', end_box='<|box_start|>(x3,y3)<|box_end|>')
450
- hotkey(key='')
451
- type(content='') #If you want to submit your input, use \"\
452
- \" at the end of `content`.
453
- scroll(start_box='<|box_start|>(x1,y1)<|box_end|>', direction='down or up or right or left')
454
- wait() #Sleep for 5s and take a screenshot to check for any changes.
455
- finished()
456
- call_user() # Submit the task and call the user when the task is unsolvable, or when you need the user's help.
457
-
458
-
459
- ## Note
460
- - Use Chinese in `Thought` part.
461
- - Summarize your next action (with its target element) in one sentence in `Thought` part.
462
-
463
- ## User Instruction
464
- """
465
- ```
466
-
467
- ### Local Deployment [Ollama]
468
- Ollama can deploy the model via gguf format. Bugs exist for safetensors.
469
-
470
- #### Get the model in GGUF format
471
- We provide 2B and 7B model in [GGUF](https://huggingface.co/docs/hub/en/gguf) format:
472
-
473
- 2B: https://huggingface.co/bytedance-research/UI-TARS-2B-gguf
474
-
475
- 7B: https://huggingface.co/bytedance-research/UI-TARS-7B-gguf
476
-
477
- Users can convert the model into GGUF format by using the script from [llama.cpp](https://github.com/ggerganov/llama.cpp/blob/master/convert_hf_to_gguf.py):
478
-
479
- ```bash
480
- python3 convert_hf_to_gguf.py <path to your model>
481
- ```
482
-
483
- The GGUF file will be generated under the path provided.
484
-
485
- #### Deploy GGUF model
486
- We deploy the model by following Ollama [tutorial](https://github.com/ollama/ollama?tab=readme-ov-file#customize-a-model).
487
-
488
- ```bash
489
- # Create Modelfile, Windows users can just create a file named Modelfile
490
- echo "FROM ./path/to/model.gguf" > Modelfile
491
-
492
- # Create model in Ollama
493
- ollama create ui-tars -f Modelfile
494
-
495
- # Run the model
496
- ollama run ui-tars
497
-
498
- ```
499
-
500
- Test script is same as vLLM except two changes:
501
-
502
- ```python
503
- ...
504
- client = OpenAI(
505
- base_url="http://127.0.0.1:11434/v1/",
506
- ...
507
- )
508
- ...
509
- response = client.chat.completions.create(
510
- model="ui-tars" # the name we create via Ollama cli
511
- ...
512
- )
513
-
514
- ```
515
-
516
- ### Explanation of Inference Results
517
-
518
- #### Coordinate Mapping
519
- The model generates a 2D coordinate output that represents relative positions. To convert these values to image-relative coordinates, divide each component by 1000 to obtain values in the range [0,1]. The absolute coordinates required by the Action can be calculated by:
520
- - X absolute = X relative × image width
521
- - Y absolute = Y relative × image height
522
-
523
- For example, given a screen size: 1920 × 1080, and the model generates a coordinate output of (235, 512). The X absolute is `round(1920*235/1000)=451`. The Y absolute is `round(1080*512/1000)=553`. The absolute coordinate is (451, 553)
524
-
525
- ## Use in desktop and web automation
526
-
527
- To experience ui-tars agent in desktop, you may refer to [UI-TARS-desktop](https://github.com/bytedance/UI-TARS-desktop).
528
-
529
- [Midscene.js](https://github.com/web-infra-dev/Midscene) is an open-source web automation SDK that has supported UI-TARS model. Developers can use javascript and natural language to control the browser. See [this guide](https://midscenejs.com/choose-a-model) for more details about setting up the model.
530
-
531
- ## License
532
-
533
- UI-TARS is licensed under the Apache License 2.0.
534
-
535
- ## Acknowledgements
536
- This project builds upon and extends the capabilities of Qwen-2-VL, a powerful vision-language model, which serves as the foundational architecture for UI-TARS. We would like to acknowledge the contributions of the developers and researchers behind Qwen-2-VL for their groundbreaking work in the field of multimodal AI and for providing a robust base for further advancements.
537
-
538
- Additionally, we thank the broader open-source community for their datasets, tools, and insights that have facilitated the development of UI-TARS. These collaborative efforts continue to push the boundaries of what GUI automation and AI-driven agents can achieve.
539
 
540
  ## Citation
541
- If you find our paper and code useful in your research, feel free to give us a cite.
542
 
543
  ```BibTeX
544
  @article{uitars2025,
@@ -548,5 +195,4 @@ If you find our paper and code useful in your research, feel free to give us a c
548
  url = {https://github.com/bytedance/UI-TARS},
549
  year = {2025}
550
  }
551
- >>>>>>> b7740444573204a4caab285076866967daf8adb5
552
  ```
 
 
1
  ---
2
  license: apache-2.0
3
  language:
 
31
 
32
  <!-- ![Local Image](figures/UI-TARS-vs-Previous-SOTA.png) -->
33
 
34
+ This repository contains the model for the paper [UI-TARS: Pioneering Automated GUI Interaction with Native Agents](https://huggingface.co/papers/2501.12326).
35
+ Code: https://github.com/bytedance/UI-TARS
36
 
37
  ## Performance
38
  **Perception Capabilty Evaluation**
 
183
  | **UI-TARS-72B-DPO** | **22.7** (15 steps) | - |
184
  | **UI-TARS-72B-DPO** | **24.6** (50 steps) | - |
185
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
186
 
187
  ## Citation
188
+ If you find our paper and model useful in your research, feel free to give us a cite.
189
 
190
  ```BibTeX
191
  @article{uitars2025,
 
195
  url = {https://github.com/bytedance/UI-TARS},
196
  year = {2025}
197
  }
 
198
  ```