File size: 2,846 Bytes
7dfea77 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 |
---
base_model: google/gemma-2-2b-it
license: other
tags:
- llama-factory
- full
- generated_from_trainer
model-index:
- name: longcot_pt_GEMMA_ZD_10_23_1
results: []
---
# OpenLongCoT-Base-Gemma2-2B-RK3588-1.1.2
This version of OpenLongCoT-Base-Gemma2-2B has been converted to run on the RK3588 NPU using ['w8a8'] quantization.
This model has been optimized with the following LoRA:
Compatible with RKLLM version: 1.1.2
## Useful links:
[Official RKLLM GitHub](https://github.com/airockchip/rknn-llm)
[RockhipNPU Reddit](https://reddit.com/r/RockchipNPU)
[EZRKNN-LLM](https://github.com/Pelochus/ezrknn-llm/)
Pretty much anything by these folks: [marty1885](https://github.com/marty1885) and [happyme531](https://huggingface.co/happyme531)
Converted using https://github.com/c0zaut/ez-er-rkllm-toolkit
# Original Model Card for base model, OpenLongCoT-Base-Gemma2-2B, below:
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
Please Please cite me if this dataset is helpful for you!🥰
```
@article{zhang2024llama,
title={LLaMA-Berry: Pairwise Optimization for O1-like Olympiad-Level Mathematical Reasoning},
author={Zhang, Di and Wu, Jianbo and Lei, Jingdi and Che, Tong and Li, Jiatong and Xie, Tong and Huang, Xiaoshui and Zhang, Shufei and Pavone, Marco and Li, Yuqiang and others},
journal={arXiv preprint arXiv:2410.02884},
year={2024}
}
@article{zhang2024accessing,
title={Accessing GPT-4 level Mathematical Olympiad Solutions via Monte Carlo Tree Self-refine with LLaMa-3 8B},
author={Zhang, Di and Li, Jiatong and Huang, Xiaoshui and Zhou, Dongzhan and Li, Yuqiang and Ouyang, Wanli},
journal={arXiv preprint arXiv:2406.07394},
year={2024}
}
```
# longcot_pt_GEMMA_ZD_10_23_1
This model is a fine-tuned version of [google/gemma-2-2b-it](https://huggingface.co/google/gemma-2-2b-it) on the [OpenLongCoT](https://huggingface.co/datasets/qq8933/OpenLongCoT-Pretrain) dataset.
This model can read and output o1-like LongCoT which targeting work with LLaMA-O1 runtime frameworks.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 8
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 1.0
### Training results
### Framework versions
- Transformers 4.44.0
- Pytorch 2.3.1
- Datasets 2.21.0
- Tokenizers 0.19.1
|