--- library_name: peft tags: - generated_from_trainer base_model: NousResearch/Llama-2-7b-hf model-index: - name: qlora-out results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml base_model: NousResearch/Llama-2-7b-hf model_type: LlamaForCausalLM tokenizer_type: LlamaTokenizer load_in_8bit: false load_in_4bit: true strict: false datasets: - path: caffeinatedcherrychic/cidds-agg-balanced type: alpaca dataset_prepared_path: last_run_prepared val_set_size: 0.1 output_dir: ./qlora-out adapter: qlora lora_model_dir: sequence_len: 2048 sample_packing: false pad_to_sequence_len: true lora_r: 32 lora_alpha: 64 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: lora_target_modules: - gate_proj - down_proj - up_proj - q_proj - v_proj - k_proj - o_proj wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 2 num_epochs: 5 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: true fp16: false tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true loss_watchdog_threshold: 5.0 loss_watchdog_patience: 3 max_steps: 500 warmup_steps: 10 evals_per_epoch: 4 eval_table_size: eval_max_new_tokens: 1 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.001 fsdp: fsdp_config: special_tokens: ```

# qlora-out This model is a fine-tuned version of [NousResearch/Llama-2-7b-hf](https://huggingface.co/NousResearch/Llama-2-7b-hf) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1998 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 62 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 6.6299 | 0.08 | 1 | 6.9320 | | 5.9686 | 0.32 | 4 | 4.4463 | | 0.5956 | 0.64 | 8 | 0.5577 | | 0.4848 | 0.96 | 12 | 0.8370 | | 0.4913 | 1.28 | 16 | 0.4896 | | 0.671 | 1.6 | 20 | 0.5175 | | 2.6136 | 1.92 | 24 | 2.3446 | | 0.6383 | 2.24 | 28 | 0.5194 | | 0.5776 | 2.56 | 32 | 0.5653 | | 0.4913 | 2.88 | 36 | 0.4791 | | 0.3486 | 3.2 | 40 | 0.4041 | | 0.4944 | 3.52 | 44 | 0.3174 | | 0.4788 | 3.84 | 48 | 0.3952 | | 0.3321 | 4.16 | 52 | 0.2342 | | 0.207 | 4.48 | 56 | 0.2058 | | 0.4502 | 4.8 | 60 | 0.1998 | ### Framework versions - PEFT 0.10.1.dev0 - Transformers 4.39.0.dev0 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.0