--- language: id tags: - pipeline:summarization - summarization - bert2gpt datasets: - id_liputan6 license: apache-2.0 --- # Indonesian BERT2BERT Summarization Model Finetuned EncoderDecoder model using BERT-base and GPT2-small for Indonesian text summarization. ## Finetuning Corpus `bert2gpt-indonesian-summarization` model is based on `cahya/bert-base-indonesian-1.5G` and `cahya/gpt2-small-indonesian-522M`by [cahya](https://huggingface.co/cahya), finetuned using [id_liputan6](https://huggingface.co/datasets/id_liputan6) dataset. ## Load Finetuned Model ```python from transformers import BertTokenizer, EncoderDecoderModel tokenizer = BertTokenizer.from_pretrained("cahya/bert2gpt-indonesian-summarization") tokenizer.bos_token = tokenizer.cls_token tokenizer.eos_token = tokenizer.sep_token model = EncoderDecoderModel.from_pretrained("cahya/bert2gpt-indonesian-summarization") ``` ## Code Sample ```python from transformers import BertTokenizer, EncoderDecoderModel tokenizer = BertTokenizer.from_pretrained("cahya/bert2gpt-indonesian-summarization") tokenizer.bos_token = tokenizer.cls_token tokenizer.eos_token = tokenizer.sep_token model = EncoderDecoderModel.from_pretrained("cahya/bert2gpt-indonesian-summarization") # ARTICLE_TO_SUMMARIZE = "" # generate summary input_ids = tokenizer.encode(ARTICLE_TO_SUMMARIZE, return_tensors='pt') summary_ids = model.generate(input_ids, min_length=20, max_length=80, num_beams=10, repetition_penalty=2.5, length_penalty=1.0, early_stopping=True, no_repeat_ngram_size=2, use_cache=True, do_sample = True, temperature = 0.8, top_k = 50, top_p = 0.95) summary_text = tokenizer.decode(summary_ids[0], skip_special_tokens=True) print(summary_text) ``` Output: ``` ```